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GR-PSN: Learning to Estimate Surface Normal
and Reconstruct Photometric Stereo Images
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Abstract—In this paper, we propose a novel method, namely GR-PSN, which learns surface normals from photometric stereo images
and generates the photometric images under distant illumination from different lighting directions and surface materials. The framework
is composed of two subnetworks, named GeometryNet and ReconstructNet, which are cascaded to perform shape reconstruction and
image rendering in an end-to-end manner. ReconstructNet introduces additional supervision for surface-normal recovery, forming a
closed-loop structure with GeometryNet. We also encode lighting and surface reflectance in ReconstructNet, to achieve arbitrary
rendering. In training, we set up a parallel framework to simultaneously learn two arbitrary materials for an object, providing an
additional transform loss. Therefore, our method is trained based on the supervision by three different loss functions, namely the
surface-normal loss, reconstruction loss, and transform loss. We alternately input the predicted surface-normal map and the
ground-truth into ReconstructNet, to achieve stable training for ReconstructNet. Experiments show that our method can accurately
recover the surface normals of an object with an arbitrary number of inputs, and can re-render images of the object with arbitrary
surface materials. Extensive experimental results show that our proposed method outperforms those methods based on a single
surface recovery network and shows realistic rendering results on 100 different materials. Our code can be found in
https://github.com/Kelvin-Ju/GR-PSN.

Index Terms—Photometric stereo, surface normal estimate, 3D reconstruction, deep neural networks, photometric image
reconstruction.
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1 INTRODUCTION

R ECOVERING the 3D shape of an object is a pivotal
problem in many computer graphics and vision appli-

cations because it can further improve the understanding
of images and scenes [1], [2], [3], [4]. Photometric stereo
aims to recover the dense 3D surface normals of an object
under changing light directions, with a fixed camera [5].
Theoretically, changing illuminations will provide varying
shading cues for recovering the surface normals, while the
shading cues are affected by the non-Lambertian surface
reflectance. Traditional photometric stereo methods attempt
to solve these problems by approximating bidirectional
reflectance distribution functions (BRDFs) [6], [7], [8] or
rejecting non-Lambertian outliers [9], [10], [11]. However,
these models are accurate for limited categories of mate-
rials and suffer from unstable optimization. Fortunately,
photometric stereo based on deep learning has recently
been introduced, which can better estimate surface normals
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and relax the non-Lambertian constraint [12], [13], [14],
[15], [16], [17]. Meanwhile, deep learning-based rendering
methods have also been proposed to generate photorealistic
appearance from a 3D shape [18], [19], [20], which is a core
problem in computer graphics. These rendering techniques
relax the dense sampling requirement, noise, and fuzzy
conditions, due to the powerful learning ability of deep
neural networks. So far, surface-normal reconstruction and
photometric-image generation tasks have entered the era of
deep neural networks.

To further improve the accuracy, however, blindly in-
creasing the model complexity and training dataset for
training the photometric stereo networks may not be ef-
fective. Different from most existing methods, which solely
focus on the constraint in the surface normal domain, we
consider both the surface normal supervision and the im-
age reconstruction supervision. In this paper, we aim to
study the relations between these two tasks and devise a
framework for training these two tasks simultaneously to
reinforce the learning of each other.

To achieve the above objectives, we propose a deep
learning framework consisting of two associated subnet-
works, called GeometryNet and ReconstructNet, which are
connected in cascade, as shown in Fig. 1. In GeometryNet,
we apply a bilateral extraction module and a top-k pooling
fusion module in a shallow-deep framework to extract fea-
tures from input images. In short, GeometryNet reconstructs
the surface normals of an object from calibrated photomet-
ric stereo images, while ReconstructNet uses the predicted
normals to reproduce the photometric images of an object
under different lighting conditions. In fact, ReconstructNet
can be regarded as the inverse task of surface-normal predic-
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tion and provides additional supervision for GeometryNet
to reduce the potential space of surface normals and to form
a closed-loop structure.

However, the aim of the rendering process is not to
reproduce the same image from the input, but it should
produce a photorealistic appearance under an arbitrary
lighting direction and the surface reflectance properties [21].
We address this issue in two ways. First, we explicitly
combine the encoded lighting with high-dimensional fea-
tures to output arbitrarily specified rendered images under
different illumination directions. Second, we further encode
the 100 different materials in the MERL BRDF dataset [22]
to form 100-dimensional one-hot features, following the
encoding way in ConditionalGAN [23], where the material
information is treated as a condition.

To better learn the characteristics of the material prop-
erties and improve the utilization of training data from
available datasets, we propose a parallel framework to
learn the rendering of an object with two different ma-
terials. To achieve this, we simultaneously input two sets
of photometric stereo images and render the reconstructed
object with swapped materials. ReconstructNet regresses
the two materials according to different encoding from the
material, forming the reconstruction loss and transform loss.
As shown in Fig. 1, the proposed method is trained by
minimizing these two losses, in addition to the surface-
normal loss.

To stabilize training, we employ a training strategy:
ReconstructNet is alternately trained with the predicted
normal map by GeometryNet and the ground-truth normal
map. Specifically, after training the whole pipeline described
in Fig. 1 (input A→ reconstruct Ã, input A→ reconstruct B̃,
input B → reconstruct Ã, and input B → reconstruct B̃), we
train ReconstructNet additionally using the ground-truth
surface normal twice (generating Ã and B̃). Experiments
show that this strategy is beneficial to the convergence of
both GeometryNet and ReconstructNet.

Our method employs widely used synthetic datasets for
training [24], [25]. Concretely, we render every sample of
an object with two randomly BRDFs from the MERL BRDF
dataset [22]. We provide a thorough ablation experiment
using the synthetic test dataset [15]. We also demonstrate the
performance of our method on the widely used DiLiGenT
benchmark dataset [26], the synthetic test data [27], and the
real photoed Light Stage Data Gallery dataset [28]. We show
that the proposed method outperforms state-of-the-art deep
learning-based methods, as well as traditional methods, on
surface-normal estimation. Additionally, our GR-PSN can
generate images with 100 different materials [22].

In summary, this paper focuses on how to unify 3D
reconstruction and rendering in a single framework and
how to further improve the accuracy of surface-normal
estimation. Our contributions are as follows:

• The proposed GR-PSN puts additional reconstruc-
tion loss and transform loss on reconstructed images,
by the use of ReconstructNet, which forms a closed-
loop structure and improves the learning of surface
normals for shape recovery.

• We propose two simple but effective bilateral ex-
traction and top-k pooling modules, to efficiently

fuse features from a variable number of extracted
features.

• The proposed method can simultaneously estimate
surface normals and render photometric images un-
der distant lighting from different directions and
surface materials.

2 RELATED WORK

In order to understand our contributions and how our
method relates to those in the literature, in this section, we
briefly review two areas, namely photometric stereo based
on deep learning and 3D recovery by reconstructing images.

2.1 Photometric stereo based on deep learning

Photometric stereo [5] perceives the 3D shape of an object
through changing shading cues, based on the Lambertian
assumption. However, ideal Lambertian surfaces barely ex-
ist in the real world, therefore, many methods have been
proposed to deal with the non-Lambertian surface prob-
lems. Traditional methods always treat non-Lambertian sur-
faces as outliers [9], [10], [11], [29], [30], or approximate non-
Lambertian reflectance observations by using sophisticated
BRDF models [6], [7], [8], [31], [32]. However, these hand-
crafted reflectance models are effective for limited classes of
surface reflectance and suffer from unstable optimization.

Meanwhile, deep learning techniques [33], [34], [35] have
shown powerful fitting ability in photometric stereo net-
works. The deep learning-based photometric stereo was first
proposed by Santo et al. [12]. Then, various deep learning-
based methods were proposed, which better relax the in-
put constraints to further improve the estimation accuracy.
These methods can be divided into two main categories, ac-
cording to how the input images are processed [36], [37]. The
methods in the first category use the intensity of every pixel
as input. DPSN [12] estimates the per-pixel surface normal
based on a fixed number of observations, which requires the
training and testing samples to have the same pre-defined
lighting conditions. To relax this limitation, CNN-PS [13]
first proposes an observation map to merge all observations
pixel by pixel, having the ability to handle inputs with
order-agnostic lighting. SPLINE-Net [14] and LMPS [38]
then apply a lighting interpolation strategy and a critical
illumination strategy to relax the limitation of sparsity in the
number of input images. Recently, PX-Net [16] proposes an
observation map-based method that considers the effect of
global illumination, while other methods, such as GPS-Net
[39] and HT21 [40], learn global information by combining
the per-pixel and all-pixel strategies. More detailed surveys
about deep learning-based photometric stereo can be found
in Refs [36], [37].

The methods of the second category use all the pixels
of images and their corresponding light directions as input,
attempting to learn shapes from various appearances. PS-
FCN [41] employs the max-pooling operation to process
an arbitrary number of input images. PS-FCN (Norm.)
[15] further applies observation normalization to handle
spatially varying materials. Under the framework of max-
pooling, Attention-PSN [42] and NormAttention-PSN [17]
propose an adaptive attention-weighted loss to improve
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Fig. 1. The overall structure of our method (red box), composed of GeometryNet (yellow box, see Section 3.3) and ReconstructNet (green box,
see Section 3.4), which are trained by minimizing the three loss functions (see Section 3.5) shown in the upper right corner. In GeometryNet, we
propose the bilateral extraction (Bi-Ext) and top-k pooling modules (see Section 3.2). A and B represent two arbitrary materials of an object.

the reconstruction performance on different surface regions.
IRPS [43] proposes an unsupervised learning framework
to estimate surface normals by minimizing the reconstruc-
tion loss. Recently, some methods have also introduced
advanced feature aggregation methods [44], [45] and feature
extraction modules [46], [47], [48]. More recently, Ikehata
[49] introduced a novel approach that departs from physical
lighting models and instead extracts a universal lighting
representation through image interactions, termed UniPS.
In this way, UniPS can effectively handle a wide range
of lighting variations, including parallel, spatially-varying,
near-field, and even complex outdoor lighting scenarios.

In fact, the above-mentioned methods are all based
on a single constraint, while our method combines both
reconstruction and rendering, to form a closed-loop archi-
tecture, trained with additional supervision. Recently, our
previous work first uses a dual regression network to realize
the relighting of photometric stereo [21], namely DR-PSN.
However, DR-PSN can only render images with an arbitrary
light direction, but without changing the material, and the
performance of DR-PSN is limited. In this paper, we pro-
pose GR-PSN to simultaneously learn surface normal and
regenerate the photometric images with arbitrary surface
reflectance and light direction. Furthermore, we explore ad-
vanced feature extraction modules for better surface normal
estimations.

2.2 3D recovery by reconstructing image
Recently, some unsupervised methods have been proposed
because of the lack of 3D ground-truth [43], [50], [51],
[52]. Taniai and Maehara [43] proposed an unsupervised
method to recover surface normals and albedo by minimiz-
ing the reconstruction loss. Tiwari and Raman [53] pursued

a holistic approach by simultaneously learning lighting es-
timation, image relighting, and surface normal estimation
to tackle the challenge of uncalibrated photometric stereo.
Additionally, they proposed an inverse rendering-based
deep learning framework, called DeepPS2 [54], that jointly
performs surface normal, albedo, lighting estimation, and
image relighting, leveraging only two different illuminated
photometric stereo images. Similarly, some later works [50],
[51], [52] were proposed to learn disentangling the 3D
shape, albedo, and lighting by rendering these components
from the original input. However, these methods require
the assumption of symmetric structures or Lambertian sur-
faces, which are valid in limited applications. Furthermore,
these methods only use the reconstruction loss, without the
ability to render photorealistic appearance under arbitrary
lighting and materials. Compared with these methods, we
realize 3D reconstruction and rendering in series, i.e., us-
ing GeometryNet followed by ReconstructNet. There are
two advantages with our model. (1) Our method uses the
deep neural network, ReconstructNet, to approximate the
reconstructed images, avoiding the inherent deviation of
illumination model-based physical renderer. (2) Our method
uses the one-hot feature [23] and light vector to explicitly
encode surface reflectance and incident light in Reconstruct-
Net, forming an additional transform loss, for realizing
the reconstruction of arbitrary materials and illumination
directions.

3 METHODOLOGY

In this section, we present a novel deep framework for pho-
tometric stereo. Our goal is to estimate the surface normals
Ñ of an object, and regenerate specific images Ĩ(M,L) of the
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object under arbitrary conditions, where M and L represent
the material and illumination direction, respectively. Our
proposed GR-PSN approximates the image formation model
in both the forward and inverse processes, as follows:

Ip(m,Li)
= ρM (ei,N

p, li)max
(
Np⊤li, 0

)
, (1)

where ρM (ei,N
p, li) is the bidirectional reflectance dis-

tribution function (BRDF) of the surface material M , ei
and li are the intensity and directions of the illumination
light, respectively, max

(
Np⊤li, 0

)
accounts for the attached

shadows, and Ip(M,Li)
and Np denote the values of I(M,Li)

and N , respectively, at the pixel position p. GR-PSN will
use GeometryNet to learn the estimated surface normal
Ñ in the forward process and ReconstructNet to learn
the reconstructed image Ĩ(M,L) in the reverse process, to
approximate the imaging model shown in Eq. (1).

As discussed above, we propose a deep learning model,
as shown in Fig. 1, which contains two associated sub-
networks, called GeometryNet and ReconstructNet. They
are connected in a cascade and trained by minimizing the
three loss functions discussed in Section 3.5. GeometryNet
reconstructs the surface normals of an object from calibrated
photometric stereo images. At the same time, Reconstruct-
Net uses the predicted surface normals to reproduce pho-
tometric stereo images under different surface materials
and illuminations. In fact, ReconstructNet can be viewed as
the inverse process of GeometryNet, providing additional
supervision for surface normal prediction and forming a
closed-loop structure.

To achieve a realistic appearance under arbitrary surface
materials, the proposed method takes the surface material
information as a condition and further encodes 100 materi-
als in the MERL BRDFs dataset [22] to form 100-dimensional
one-hot features, following the encoding method in con-
ditional GAN [23]. In order to better learn the properties
of surface materials, we propose a parallel framework to
learn the rendering process of an object using two different
materials. As shown in Fig. 1, A and B represent two
arbitrary materials of an object, the model simultaneously
inputs two sets of photometric stereo images and renders
the reconstructed objects with the encoded surface material
features swapped. ReconstructNet regresses the two materi-
als according to different encoded one-hot features, forming
the reconstruct loss and transform loss.

This section first presents the baseline operations in
deep learning-based photometric stereo networks. Then, we
show the structure of GeometryNet and the ReconstructNet.
Finally, we introduce the triple-supervised loss function and
training method.

3.1 Baseline operations

3.1.1 Double-gate observation normalization
A CNN-based network may fail to estimate an input with
spatially varying colors, because it handles inputs in terms
of patches, and patches with different colors may cause
mutual influence. For photometric stereo mages, multi-
materials can also cause drastic changes in color, which
can impact the feature extraction of convolutional layers.
Therefore, the observation normalization method [15] is

Conv.  Stride = 1            Conv.  Stride = 2           Deconv.

(a)                                            (b)

Fig. 2. Network architecture of (a) the encoder unit, and (b)the decoder
unit.

employed to remove the impact of spatially varying sur-
face materials, which normalizes each observation by all n
observations, as follows:

o′i =
oi√

o21 + o22 + · · ·+ o2n
, i ∈ {1, 2, · · · , n}, (2)

where oi and o′i represent a pixel value in the ith original
observation I and the normalized observation I′, respec-
tively. Under the assumption of Lambertian reflectance, the
reflectance ρ in Eq. (1) can be totally removed. However, this
observation normalization method is not applicable to non-
Lambertian conditions. While most of the regions are close
to the Lambertian model, those with specular highlights
may be impacted after the normalization process, because
the highlights enlarge the denominator of Eq. (2) and sup-
press the normalized pixel intensity. Therefore, our previous
method, NormAttention-PSN [17], proposed a double-gate
observation normalization method, as follows:

o′i =
oi√∑
k o

2
k

, i ∈ T , k ∈ S, (3)

where the set S is a subset of T = {o1, o2, · · · , on}, which
is controlled by the two gate (thresholds), such that oi ∈ S
if Gate(P10) < oi < Gate(P90), for i = 1, 2, · · · , n. The
percentile P denotes a positional indicator and divides
all observations into two parts. With this baseline opera-
tion, our GR-PSN can avoid extracting erroneous feature
information from non-Lambertian surfaces with changing
materials.

3.1.2 Light direction embedding
As a calibrated photometric stereo method, the light di-
rection of each input image should be known and input
into the network. However, an incident light direction is
a vector li ∈ R3, which cannot be fused with the input
images ∈ RC×H×W . Therefore, following the widely used
operation, we duplicate each light direction li to form 3-
channel features Li and L′

i, having the same spatial dimen-
sion as the input image and fused feature ∈ R3×H×W and
∈ R3× 1

4H× 1
4W . In this case, the expanded light direction Li

and L′
i can be concatenated with images and features.

3.1.3 Network units
To largely exclude the influence of other factors and verify
the effectiveness of the main modules in our proposed
network, i.e., the proposed closed-loop structure, and the
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Fig. 3. Architecture of the bilateral extraction module.

bilateral extraction and top-k pooling modules, all other
parts of our network are simple fully convolutional layers,
as depicted in Fig. 2. For the encoder unit, our structure
includes four convolutional layers, with the stride = 2 in the
second layer to down-sample the features. In GeometryNet
(the deep feature extraction stage), we use the encoder unit
twice with a deconvolutional layer to increase the receptive
field and preserve spatial information with a small memory
burden. For the decoder unit, we design a deconvolutional
layer to up-sample the features. All convolutional layers also
use 3 × 3 kernels. It is worth noting that the channel and
spatial dimensions of convolutional layers are adapted to
the inputs.

3.2 Bilateral extraction and top-k pooling modules

We propose a bilateral extraction module and a top-k
pooling module to efficiently fuse an arbitrary number of
extracted features, in GeometryNet(see Section 3.3). In this
Section, we will introduce these two modules.

3.2.1 Bilateral extraction module
Conventional activation functions, such as ReLU,
LeakyReLU, and ELU, truncate or attenuate negative
inputs. This may result in unwanted loss or distortion
of information. The non-activated part of the input may
contain important features. While some activation functions,
such as Sigmoid and Tanh, respond to both positive and
negative inputs, the gradients in saturated regions are
small and may cause vanishing gradients. To address this
limitation, we adopt bilateral extraction, inspired by [55], to
maximize the use of the negative part of the features, while
retaining the non-linearity. As illustrated in Fig. 3, the input
feature F of the bilateral extraction module is activated by
the original and the 180° rotated ELU activation functions
(bilateral activation), resulting in the positive feature FP

and the rotated negative feature FR. We also add a 1 × 1
convolutional layer after the bilateral activation to reduce
the channel dimension by half.

3.2.2 Top-k module
Convolutional neural networks (CNNs) are known to be
incapable of handling a variable number of inputs during
training and testing. Previous photometric stereo networks
mainly apply the max-pooling operation to aggregate an
arbitrary number of extracted features [15], [41]. However,

max-pooling can only retain the maximum response for each
position, thus discarding a large amount of information in
the inputs. To relax this limitation, we further adopt a top-k
pooling module instead of max-pooling, which keeps the
top-k maximum responses from all input features at the
same position. The advantages of top-k are twofold. First,
more features are retained in this module, which can be ben-
eficial to surface-normal regression. Second, the maximum
response feature may face the problem of overexposure
(the pixel value is 255 only), when meeting the specular
highlights condition, resulting in the loss of all information.
Nevertheless, this issue can be alleviated by learning from a
number of maximum features. In our method, the number
of top feature values k is 3, i.e., the three largest features at
each pixel position are considered. However, in this case, the
dimension of the fused feature is k times that of the input
feature.

3.3 GeometryNet

In this Section and 3.4, we illustrate GeometryNet and
ReconstructNet in detail, as shown in Fig. 1.

Given n arbitrary normalized observations
{I′

(L1), I
′
(L2), · · · , I′

(Ln)}, where I′
(Li) ∈ R3×H×W , i ∈

{1, 2, · · · , n}, concatenated with the expanded illumination
direction Li ∈ R3×H×W (discussed in Section 3.1.2),
GeometryNet outputs surface normals Ñ , as follows:

Ñ = fge(I
′
(Li),Li; θge), (4)

where fge is a feed-forward network with learnable param-
eters θge, i.e., the yellow box in Fig. 1.

Different from PS-FCN [41], we propose GeometryNet,
with a deep-shallow and global-local multiple feature fusion
framework [45]. Our network structure adopts the above-
mentioned bilateral extraction and top-k pooling modules
(see Section 3.2) to fuse local and global features of the in-
puts in the shallow layers, so as to generate comprehensive
features for predicting surface normals. We argue that (1)
the global selection mechanism only extracts the most k
salient representations of each feature, while the discarded
local features may still be important for estimation of sur-
face normals, and (2) deep and shallow feature fusion has
an irreplaceable impact on the extracted features, due to
the fact that the deep and shallow features are extracted
with different receptive fields, so the features should con-
tain unique information. Therefore, GeometryNet integrates
global-local features and deep-shallow features, and these
fused features can further improve the estimated surface
normals, compared to the original framework.

To better estimate the surface normals at the output,
a DenseNet-based module [56] is also employed. In our
GeometryNet, three dense blocks, with 2, 4, and 3 layers,
are used.

3.4 ReconstructNet

With the predicted surface normals Ñ for an encoded
material from GeometryNet, ReconstructNet can produce
images of the object with the specific material under dif-
ferent specified light directions li. Therefore, we encode
the materials, using a one-hot feature vector M ∈ R100.
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Given the predicted surface normals Ñ , the specific material
vector M , and the embedded lighting direction L′

i (see
Section 3.1.2), ReconstructNet produces the reconstructed
image Ĩ(M,Li), as follows:

Ĩ(m,Li) = fre(Ñ ,M ,L′
i; θre), (5)

where fre represents a feed-forward encoder with learnable
parameters θre. As shown in the green box in Fig. 1, the
material vector M ∈R100 is first expanded to the spatial res-
olution of 100 × 1

4H × 1
4W ( same as the expansion method

for the lighting direction), and the number of feature-map
channels is increased to 256, via a 1 × 1 convolutional layer.
This generated material feature is then concatenated with
the surface-normal feature extracted by the two encoder
units and the specific expanded illumination direction L′

i,
which can then generate the reconstructed image Ĩ(M,Li)

via the DenseNet-based module [56] (same as the one in
GeometryNet) and two decoder units, following the image
formation model described in Eq. (1).

3.5 Loss function
We optimize the parameters θgr and θre by minimizing the
following joint loss function L, as follows:

L = Lnormal + λ(Lrecon + Ltrans), (6)

where Lnormal defines the surface-normal loss between the
predicted surface normal Ñ and the ground truth N , given
as follows:

Lnormal =
1

HW

HW∑
p

(2− Ñp
(A) ⊙Np − Ñp

(B) ⊙Np), (7)

where Ñp
(A) and Ñp

(B) denote the estimation via observa-
tions with materials A and B, and ⊙ represents the dot-
product operation. If the estimated surface normal Ñp has
a similar orientation to that of the ground truth Np at pixel
p, Ñp ⊙ Np will be close to 1 and the corresponding loss
will approach 0.

The remaining two terms define the two losses between
the reconstructed images {Ĩ(A,L1), Ĩ(A,L2), · · · , Ĩ(A,Ln)},
{Ĩ(B,L1)Ĩ(B,L2), · · · , Ĩ(B,Ln)} and the real ob-
servation images {I(A,L1), I(A,L2), · · · , I(A,Ln)},
{I(B,L1), I(B,L2), · · · , I(B,Ln)}, with two different
materials A and B, and different lighting directions Li,
i ∈ {1, 2, · · · , n}. Lrecon denotes the reconstruction loss
between the input images and the reconstructed images
with the same material ( i.e., the red line in Fig. 1), which is
defined, as follows:

Lrecon =
1

n

n∑
i

(∥Ñ(A) → Ĩ(A,Li), I(A,Li)∥
2
2

+∥Ñ(B) → Ĩ(B,Li), I(B,Li)∥
2
2),

(8)

Another loss, denoted as Ltrans, is the reconstruction loss
between the input images and the reconstructed images of
different materials (i.e., the blue arrows in Fig. 1), which is
defined as follows:

Ltrans =
1

n

n∑
i

(∥Ñ(B) → Ĩ(A,Li), I(A,Li)∥
2
2

+∥Ñ(A) → Ĩ(B,Li), I(B,Li)∥
2
2).

(9)

Algorithm 1 GR-PSN Training Algorithm
for j = 1 : Num of samples
Input: Images of the sample with material A
{I(A,L1), I(A,L2), · · · , I(A,Ln)} and material B
{I(B,L1), I(B,L2), · · · , I(B,Ln)}, with illuminations L1,
L2, · · · , Ln, encode one-hot feature m, hyperparameter λ.
1. Obtain Ñ(A) and Ñ(B), via training GeometryNet, using
Eq. (7);
2. Obtain Ĩ(A,Li) from Ñ(A), Ĩ(B,Li) from Ñ(B), via
training ReconstructNet, using Eq. (8);
3. Obtain Ĩ(A,Li) from Ñ(B), Ĩ(B,Li) from Ñ(A), via
training ReconstructNet, using Eq. (9);
4. Obtain Ĩ(A,Li) and Ĩ(B,Li) from N , via training
ReconstructNet, using Eq. (11);
5. Minimize the parameters θge, θre, via the combined loss
Eq. (10);
Output: Estimated surface normal map Ñ(A) and Ñ(B),
reconstructed images Ĩ(A,Li) and Ĩ(B,Li), i ∈ {1, 2, · · · , n}.
end for

For Lrecon and Ltrans, the hyperparameter λ in Eq. (6) is
set at 0.1 during training, to balance the normal loss and the
reconstruction loss.

3.6 Training & testing procedures
In our framework, the learning of ReconstructNet requires
a surface-normal map as input. However, the normal map
predicted by GeometryNet is inaccurate at the beginning of
training. Using an inaccurate input will make Reconstruct-
Net converge to an incorrect local minimum.

Therefore, we propose an effective strategy for GR-
PSN, which alternately uses the predicted and the ground-
truth surface-normal maps as input to ReconstructNet. This
strategy can train GeometryNet and ReconstructNet in an
end-to-end manner, while ReconstructNet can be trained
properly. Concretely, we additionally train ReconstructNet
using the ground-truth surface-normal maps N twice, for
each training sample: one for generating the rendered image
with material A and the other with material B, after Lrecon

and Ltrans. Actually, the joint loss function L in Eq. (6)
should be written as follows:

L = Lnormal + λ(Lrecon + Ltrans + Lassist), (10)

where Lassist is defined as follows:

Lassist =
1

n

n∑
i

(∥N → Ĩ(A,Li), I(A,Li)∥
2
2

+∥N → Ĩ(B,Li), I(B,Li)∥
2
2.

(11)

The training algorithm for the proposed GR-PSN is
summarized in Algorithm 1.

In testing, the trained GR-PSN can take a set of cali-
brated photometric stereo images with arbitrary materials
as input, whether the object has homogeneous material or
spatially varying materials. Since ReconstructNet does not
extract material information from the input images, but
extracts from the specified one-hot feature in testing, i.e., a
number (from 0 to 99) representing the specified material is
needed, to determine the rendered material of the object. Of
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course, we can realize multi-material reconstructed images
indirectly, via masks for different materials.

Our model was implemented in PyTorch. We use Adam
as the optimizer, setting β1 = 0.9 and β2 = 0.999. The
learning rate is initially set to 0.001, and then divided by
2 every 5 epochs. We train the model using a batch size of
96 for 40 epochs, and choose a fixed n=32 as the number of
input images, with a spatial resolution H=W =32 (without
random crop). It takes about 43.5 hours to train the frame-
work, using a single RTX 3090 GPU with 24 GB memory. It is
worth noting that we use the same illumination directions
as the input images in training, but any directions can be
used in testing. Similarly, the material can also be arbitrary.

4 EXPERIMENTS

To verify the quantitative accuracy of the predicted surface
normals, we use the mean angular error (MAE) in degrees,
calculated by MAE = 1

U

∑U
p cos−1

(
Ñp ⊙Np

)
, where U

is the total number of pixels in the area where the surface
normals are considered. For reconstructed images, we adopt
the commonly used relative error (REL), calculated as REL

= 1
nU

∑n
i

∑U
p

∣∣∣Ĩp
M,Li

−Ip
M,Li

∣∣∣
Ip
M,Li

.

4.1 Datasets
The training synthetic dataset is the same as the widely
used setup [15], [17], [21], [38], [39], [41], [45], [46], [57], [58],
[59], including two shape datasets, named Blobby [25] and
Sculpture [24], rendered by the MERL BRDFs dataset [22]
(containing 100 different real-world materials). However,
the way of using the datasets is different. In our experi-
ments, we render each object with two randomly selected
materials (from the MERL BRDFs dataset), denoted the
materials as A and B in Fig. 1.

To evaluate our method, we apply several commonly
used real and synthetic datasets. For real datasets, we first
test our method on the widely used DiLiGenT benchmark
dataset [26] and DiLiGenT102 [60], which contains 10 ob-
jects and 100 objects with ground truth. Therefore, we can
quantitatively compare our GR-PSN with other methods on
this dataset. Furthermore, we employ the Light Stage Data
Gallery [61], which contains six samples without ground
truth. Each object has 253 images under different known
illumination directions.

For the synthetic dataset, we use the synthetic objects
“Dragon” and “Armadillo” of the synthetic test set [62]
in our experiments. These two objects are rendered with
100 different BRDFs from the MERL dataset [22] under 100
random illumination directions in the upper hemisphere. In
this synthetic dataset, we can quantitatively test both the
accuracy of the estimated surface normals and the rendered
images.

4.2 Ablation studies
To quantitatively evaluate the effectiveness of our proposed
modules, framework, and training strategy, a standard val-
idation set with 852 samples [15], with all 64 input images
and two rendered materials for each sample, is employed.
We report the average MAE computed across these 852

TABLE 1
Performance of adding ReconstructNet to form a closed-loop structure,

in terms of MAE and REL.

Manners MAE (V) ↓ REL (O / C) ↓ MAE(D) ↓
Proposed 5.62 0.070 / 0.071 6.55
w/o ReconstructNet 6.17 - / - 7.03

Observation & GT    w ReconstructNet w/o ReconstructNet

Pot1                        5.54                                        5.92    

Pot2                       6.42                                    6.72    

90

45

0

Fig. 4. Visualized examples on the DiLiGenT dataset. The first row of
each sample represents the estimated normal maps, while the second
row represents the error maps, based on with or without Reconstruct-
Net. The values under error maps are MAE in degrees.

samples, marked as MAE (V). It is worth noting that the
REL metric includes two parts, REL (O) and REL (C), which
represent the REL of the rendered images with the original
material and changed material, respectively. We also report
the average MAE on the real-photoed DiLiGenT dataset
with 10 objects [26], marked as MAE (D). However, we
cannot measure the REL metric on the DiLiGenT dataset,
because it lacks reconstructed images with changed materi-
als.

4.2.1 Effectiveness of ReconstructNet and hyperparameter
λ

We first test the effectiveness of the proposed Reconstruct-
Net (Table 1, Fig. 4) and its different weights for the hyper-
parameter λ in Eq. (10) (Fig. 5).

As tabulated in Table 1, our GR-PSN obviously outper-
forms the baseline structure (w/o ReconstructNet), which
only uses the constraint of surface normals. This illustrates
that ReconstructNet can provide additional supervision on
the image domain, and the joint task of image reconstruc-
tion can reinforce the learning of normal estimation. Fig.
4 further illustrates the effectiveness of the proposed Re-
constructNet. It can be seen that the details in the shadow
region and complex structure region (red box in Fig. 4) can
be better recovered with the use of full model GR-PSN.
This may be due to the fact that the inverse stage, i.e.,
ReconstructNet, can reduce the original search space and
relax the optimization.

As shown in Fig. 5, to determine the optimal hyperpa-
rameter λ, we experimentally evaluate our GR-PSN with
different values of λ from 0 to 1. It can be seen that the best
performance is achieved when λ = 0.1, which achieves the
smallest MAE on both the validation set and the DiLiGenT
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Fig. 5. Results of our GR-PSN, trained with different hyperparameter
values λ. The left Y axis represents the MAE of the predicted surface
normals, while the right Y axis represents the REL of the rendered
images. Note that λ = 0 equals w/o ReconstructNet in Table 1, which is
trained with GeometryNet only.

TABLE 2
Performance of using different training strategies, in terms of MAE and

REL.

Manners MAE (V)↓ REL (O / C) ↓ MAE(D) ↓
Proposed 5.62 0.070 / 0.071 6.55
w/o Lassist 5.84 0.75 /0.75 6.87

benchmark dataset [26]. It is worth noting that our model
is only trained with GeometryNet when the hyperparam-
eter λ = 0, which shows a worse MAE for surface-normal
estimation. This reflects the effectiveness of the proposed
ReconstructNet, which can provide additional supervision
for recovering surface normals. From the REL perspective,
the performance continuously improves until the hyper-
parameter λ is larger than 0.2. This is because a larger
weight for reconstruction naturally benefits the learning of
reconstructed images. However, the REL metric becomes
obviously worse when λ is larger than 0.6. We conjecture
that this may be due to the fact that a large weight for the
reconstruction loss impacts the accuracy of the estimated
surface normal, which in turn affects ReconstructNet.

In fact, the optimal value of the hyperparameter λ also
depends on the training strategy. From Eq. (10), in each
iteration, we can see that ReconstructNet is trained three
times while GeometryNet is only trained once. Therefore, a
smaller weight, such as 0.1, is good for stable training.

4.2.2 Effectiveness of training strategy
We evaluate the effectiveness of the proposed training strat-
egy, i.e., alternately using predicted and the ground-truth
surface normals as input to ReconstructNet, as described
in Section 3.6. As tabulated in Table 2, the proposed GR-
PSN uses the additional loss Lassist as in Eq. (10), while
the ablation study discards this loss as in Eq. (6). Note that
the experiment results are under the setting of λ = 0.1, as
discussed in Section 4.2.1.

The loss function Lassist for ReconstructNet, with the
use of ground-truth surface-normal maps, can be viewed
as simple supervised task, guiding ReconstructNet to reach

TABLE 3
Effectiveness of Double-gate normalization, bilateral extraction, top-k
fusion, and deep-shallow feature fusion, in terms of MAE and REL.

ID Manners MAE (V) ↓ REL (O / C) ↓ MAE(D) ↓
(0) Proposed 5.62 0.070 / 0.071 6.55
(1) w/o Normalization 6.36 0.073 / 0.072 7.11
(2) w/o Bilateral extraction 5.75 0.071 / 0.071 6.75
(3) w/o Top-k fusion 5.69 0.071 / 0.070 6.70
(4) w/o Deep-shallow fusion 5.85 0.071 / 0.071 6.92

TABLE 4
Performance on the DiLiGenT benchmark [26] with 96 images, in terms

of MAE (degrees). The values in red and blue represent the best
performance and the second-best performance, respectively.

Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.
Least Square [5] 4.10 8.39 14.92 8.41 25.60 18.50 30.62 8.89 14.65 19.80 15.39
IW12 [10] 2.54 7.32 11.11 7.21 25.70 16.25 29.26 7.74 14.09 16.17 13.74
GC10 [63] 3.21 6.62 14.85 8.22 9.55 14.22 27.84 8.53 7.90 19.07 12.00
WG10 [11] 2.06 6.50 10.91 6.73 25.89 15.70 30.01 7.18 13.12 15.39 13.35
IA14 [31] 3.34 7.11 10.47 6.74 13.05 9.71 25.95 6.64 8.77 14.19 10.60
ST14 [8] 1.74 6.12 10.60 6.12 13.93 10.09 25.44 6.51 8.78 13.63 10.30
SPLINE-Net [14] 4.51 5.28 10.36 6.49 7.44 9.62 17.93 8.29 10.89 15.50 9.63
DPSN [12] 2.02 6.31 12.68 6.54 8.01 11.28 16.86 7.05 7.86 15.51 9.41
IRPS [43] 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83
LMPS † [38] 2.40 5.23 9.89 6.11 7.98 8.61 16.18 6.54 7.48 13.68 8.41
PS-FCN [41] 2.82 7.55 7.91 6.16 7.33 8.60 15.85 7.13 7.25 13.33 8.39
Attention-PSN [42] 2.93 4.86 7.75 6.14 6.86 8.42 15.44 6.92 6.97 12.90 7.92
LERPS [53] 2.41 6.93 8.84 7.43 6.36 8.78 11.57 8.32 7.01 11.51 7.92
DR-PSN [21] 2.27 5.46 7.84 5.42 7.01 8.49 15.40 7.08 7.21 12.74 7.90
GPS-Net [39] 2.92 5.07 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81
JJ21 [57] 2.51 5.77 7.88 6.56 6.29 8.40 14.95 7.21 7.40 11.01 7.80
CNN-PS † [13] 2.12 8.30 8.07 4.38 7.92 7.42 14.08 5.37 6.38 12.12 7.62
PS-FCN (Norm.) [15] 2.67 7.72 7.53 4.76 6.72 7.84 12.39 6.17 7.15 10.92 7.39
MF-PSN [45] 2.07 5.83 6.88 5.00 5.90 7.46 13.38 7.20 6.81 12.20 7.27
HT21† [40] 2.49 8.96 7.23 4.69 4.89 6.89 12.79 5.10 4.98 11.08 6.91
NormAttention-PSN [17] 2.93 5.48 7.12 4.65 5.99 7.49 12.28 5.96 6.42 9.93 6.83
WZ20 ‡ [58] 1.78 5.26 6.09 4.66 6.33 7.22 13.34 6.46 6.45 10.05 6.76
PX-Net† [16] 2.03 4.13 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.33
GR-PSN (Ours) 2.22 5.61 6.73 4.33 6.17 6.78 12.03 5.54 6.42 9.65 6.55

an optimal performance. Actually, it is very difficult to train
the entire process, with two cascaded networks. Therefore,
we use the easier task (Lassist) to assist the learning of the
harder tasks (Lrecon and Ltrans). In Table 2, we can see the
results indicate that our learning strategy is effective.

4.2.3 Effectiveness of the used modules
As shown in Table 3, we tested the modules used in Ge-
ometryNet, as discussed in Sections 3.1.1, 3.2, and 3.3. All
experiments in Table 3 are conducted under the setting λ =
0.1 and the proposed training strategy discussed in Sections
4.2.1 and 4.2.2.

For ID (1), we remove the double-gate observation nor-
malization [17]. It achieves lower accuracy in terms of
MAE and REL. ID (2) does not use the bilateral extrac-
tion module. In this case, the top-k pooling modules only
receive n features extracted from n input images. ID (3)
represents the method without using top-k pooling, but
the original max-pooling [41]. Comparing IDs (2) and (3)
with the proposed method, we can see that bilateral ex-
traction and top-k pooling can improve the learning ability
of surface-normal estimation to some extent. In ID (4), we
analyze the effectiveness of the deep-shallow and global-
local multiple-feature fusion framework. For testing, we
only retain the deep fusion module, while discarding the
shallow fusion module. Therefore, the extraction stage of
GeometryNet will be three consecutive encoding units with
one deconvolutional layer. Due to the lack of shallow fusion,
the fused features are not concatenated with every feature
extracted from the input image (without the deep-shallow
and global-local multiple-feature fusion framework). It can
be found that the performance, in terms of MAE, drops by
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Observation/GT                Ours                         PX-Net            NormAttention-PSN             WZ20                       MF-PSN              PS-FCN (Norm.)                 

90

45

0

Harvest                         12.03                         13.10                          12.28                          13.34                          13.38                          12.39

Reading                        9.65                           10.26                            9.93                          10.05                          12.20                        10.92

Goblet                         6.78                            6.90                             7.49                         7.22                           7.46                            7.84

Buddha                        6.73                            7.61                             7.12                          6.09                             6.88                           7.53

Fig. 6. Quantitative results on the DiLiGenT dataset, with 96 input images. The first row of each sample represents the estimated normal maps,
while the second row represents the error maps, based on the different methods. The values represent MAE in degrees. The contrast of the images
is adjusted for easy visualization. It can be seen that our GR-PSN achieves better performance on surfaces with cast shadows (red boxes) and
spatially varying materials (green boxes).

0.23 degrees and 0.37 degrees on the validation set and the
DiLiGenT benchmark dataset [26], respectively. However,
the performance in terms of REL, which reflects the accuracy
of the reconstructed images, is hardly affected by the ablated
GeometryNet modules in IDs (1) to (4).

4.3 Evaluation on the DiLiGenT benchmark
The DiLiGenT benchmark [26] is a widely used real-photoed
dataset for photometric stereo. It contains ten real-world
objects, and is challenging for its strong non-Lambertian

surfaces and complex structures. Each object has 96 images
under different illumination directions. Table 4 tabulates
the experimental results for all 96 input images, in terms
of MAE, of our GR-PSN and other state-of-the-art meth-
ods. Most of the learning-based methods are represented
by their network names. For non-learning methods and
those learning-based methods without a network name, we
present them by the first letter of the author’s name, fol-
lowed by the year of publication. We use † to represent the
networks trained by CyclePS [13] rendered by Disney’s prin-
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Harvest                             Gold-metallic-paint2                         Violet-rubber                          Blue-metallic-paint                         Yellow-plastic

Reading                                                      Nylon                 Aluminum              Cherry-235             Green-latex           Polyethylene    
Specular

-red-phenolic
Specular

-blue-phenolic

Cow Alum-bronze Gold-paint Purple-paint Specular-green-p. Specular-yellow-p. Yellow-matte-plastic

Cat                 Neoprene-rubber

Buddha                  Silver-paint

Fig. 7. Results of rendered objects from the DiLiGenT benchmark. The first two rows show the rendered images with different illuminated lights.
The last three rows show examples of the objects rendered for different materials. The contrast of the images is adjusted for easy visualization.

cipled BSDFs [64]. For example, PX-Net [16], HT21 [40], and
CNN-PS [13] train their models using Disney’s principled
BSDFs [64], which may lead to better performance because
it contains unlimited reflectance. The Disney’s principled
BSDFs used contains unlimited reflectance, as they integrate
different BRDFs controlled by 11 parameters. This makes
the reflectance distributions more similar in real-world sce-
narios. Conversely, the MERL BRDFs dataset contains only
100 kinds of reflectance, which barely span all materials that
exist in nature. However, this dataset is not suitable for most
all-pixel methods (discussed in Section 2.1), because it is
designed for the per-pixel processing strategy rather than
the all-pixel networks (the number of samples required is
very large for all-pixel methods). We also use ‡ to represent
the method WZ20 [58], which uses a specific collocated
illumination constraint in the augmented synthetic dataset
rendered by the MERL BRDFs dataset [22]. Therefore, the
comparison with † and ‡ is not entirely fair.

As shown in Table 4, our method achieves the second-
best MAE (state-of-the-art compared to the methods trained
with MERL BRDFs dataset [22]), averaged over ten objects.
For those complicated and strong non-Lambertian objects,
such as “Buddha”, “Goblet”, “Harvest”, and “Reading”,

which contain shadows and inter-reflections, as shown in
Fig. 6, the proposed method achieves the best or the second-
best performances. It can be seen that our method achieves
better results in those regions with cast shadows (red boxes),
such as the “crotch” of the object “Reading”, and those
regions with spatially varying materials (green boxes), such
as the “headband” of the object “Harvest”. This can be
explained by the fact that our GR-PSN can learn the entire
representation of BRDFs, which constrains the learning of
surface normals. These results illustrate the effectiveness
of our method, which receives additional supervision, per-
formed by ReconstructNet.

Furthermore, Fig. 7 shows some reconstructed images
on the DiLiGenT benchmark [26]. We first show the re-
constructed images of “Buddha” and “Cat” under different
light directions, but keeping the same material. We then
show the rendered images of complicated objects with
different materials, i.e., “Harvest” and “Reading”. It can
be seen that specularities and shadows are obvious on
those objects with complicated structures when rendered
with metal materials, and the reconstructed images are not
affected by spatially varying materials on the original sur-
faces. Although the ground-truth of reconstructed images
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TABLE 5
Performance on the DiLiGenT benchmark [26] with different numbers of

input images. The values in red and blue represent the best
performance and the second-best performance, respectively.

Methods Number of input images
10 16 32 64 96

Least Square [5] 16.10 15.73 15.51 15.42 15.39
SPLINE-Net [14] 10.35 10.12 9.93 9.72 9.63
IRPS [43] 10.79 9.87 9.38 8.98 8.83
LMPS [38] 10.01 9.66 9.38 9.15 8.41
PS-FCN [41] 10.19 9.20 8.74 8.47 8.39
DR-PSN [21] 9.94 9.06 8.32 8.03 7.90
GPS-Net [39] 9.43 8.71 8.05 7.84 7.81
CNN-PS [13] 13.53 10.40 8.18 7.56 7.62
PS-FCN (Norm.) [15] 10.40 8.23 7.59 7.40 7.39
NormAttention-PSN [17] 10.50 7.86 7.08 6.89 6.83
GR-PSN (Ours) 9.98 8.02 7.25 6.86 6.55

with the MERL BRDFs dataset [22] is not available in the
DiLiGenT benchmark [26], the re-reconstructed images can
display the details of the objects. This demonstrates the
accurate performance achieved by ReconstructNet.

4.4 Evaluation with an arbitrary number of input im-
ages

In fact, many practical applications involve sparse photo-
metric stereo. We evaluate our GR-PSN and flexible input
methods on the DiLiGenT benchmark using varying num-
bers of input images. We perform the testing on all ten
objects and average the results. Specifically, we train our
proposed method with a fixed 32 input images and test
with 10, 16, 32, 64, and 96 input images of the DiLiGenT
benchmark [26]. The results are shown in Table 5.

As illustrated in Table 5, the proposed GR-PSN method
demonstrates superior performance compared to other ap-
proaches when utilizing 64 and 96 images. Additionally,
it maintains sub-optimal estimation results in cases of 16
and 32 images. These outcomes highlight the effectiveness
of our method, particularly in scenarios involving dense
input images. Furthermore, GR-PSN keeps a promising
performance when 10 images are used. Note that some
methods in the comparison were trained using only 10 input
images, specifically designed for sparse input conditions,
such as LMPS [38] and SPLINE-Net [14]. Similarly, some
recent technologies pay more attention to the sparse input
photometric stereo with notably improved results, such as
PS-Transformer [48] and DeepPS2 [54]. However, it’s impor-
tant to mention that using more than 10 input images in
[48] might result in insufficient GPU memory due to large
parameter requirements.

4.5 Evaluation on the DiLiGenT102 dataset

To conduct an in-depth analysis of our GR-PSN regarding its
generalization capability across various objects and materi-
als, we test GR-PSN on the challenging DiLiGenT102 dataset
[60]. The results acquired by the online evaluation website 1

are shown in Fig. 8.
Referring to DiLiGenT102 [60], our GR-PSN achieves the

average MAE of 15.33 and outperforms all the reported

1. The online evaluation website can be found in https://
photometricstereo.github.io/diligent102.html
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Fig. 8. Shape-material error matrix for our GR-PSN. A number in each
element of the matrix indicates an MAE in degrees according to a shape
and material index.

methods in their paper. These encompass traditional meth-
ods Lease square [5] (18.13), TH28 [26] (19.66), TH46 [26]
(18.82), WG10 [11], ST14 [8] (18.34), PF14 [65] (30.63), and
learning-based methods PS-FCN [41] (16.21), CNN-PS [13]
(15.78), IRPS [43] (17.10), SPLINE-Net [14] (16.42), GPS-Net
[39] (19.98). It can be seen that GR-PSN achieves the best
performance for surface normal estimation, and especially
works well for anisotropic materials such as STEEL, Cu,
and Al. It owes to the effectiveness of our method, which
receives additional supervision, performed by Reconstruct-
Net.

4.6 Evaluation on the synthetic test data

Due to the lack of quantitative results of reconstructed
images in the DiLiGenT benchmark [26], we use the syn-
thetic test data from the Stanford 3D dataset [62]. Each
type of material of the objects “Dragon” and “Armadillo”
have 100 random illumination directions in the upper hemi-
sphere. Fig. 9 shows the MAE of predicted normal maps
of “Dragon” and “Armadillo” under 100 kinds of materials
rendered by MERL BRDFs [22]. Fig. 10 further shows the
REL of rendered images of “Dragon” and “Armadillo”,
under 100 kinds of materials.

As shown in Fig. 9, our method achieves promising re-
sults under 100 kinds of materials, with the average MAE of
5.63◦ and 6.11◦ for the objects “Dragon” and “Armadillo”,
respectively. It can be seen that the average MAE of the
object “Armadillo” is larger than “Dragon”, which may be
caused by the more complex surface structure. In contrast,
as shown in Fig. 10, the average REL of the re-rendered
images are 0.072 and 0.081 for “Dragon” and “Armadillo”,
respectively. It shows more similar performance for the
reconstructed images, which illustrates the robustness of
ReconstructNet in the proposed GR-PSN.

4.7 Evaluation on the Light Stage Data Gallery

We further evaluated our method on the more complex
Light Stage Data Gallery [61], with general non-Lambertian
materials. Due to the lack of ground truth, we show in

https://photometricstereo.github.io/diligent102.html
https://photometricstereo.github.io/diligent102.html
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A B C D E
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Fig. 9. MAE of the predicted surface normals for the samples “Dragon” and “Armadillo” with 100 kinds of materials in MERL BRDF [22]. Some
examples are shown in the upper-left corner.

A B C D E

A B C D E

Fig. 10. REL of the reconstructed images for the samples “Dragon” and “Armadillo” with 100 kinds of materials in MERL BRDF [22]. Some examples
are shown in the upper-left corner.

Object           Estimation          Mesh         Rendered images

Plant                                                                         Aventurine Gold-metallic-paint Red-specular-plastic

Helmet                                                                        Red-plastic Specular-blue-phenolic Two-layer-silver

Standing                                                                       Pink-fabric Violet-acrylic White-fabric

Fig. 11. Evaluation on the Light Stage Data Gallery, with 64 input images. We qualitatively show estimated surface normals and reconstructed
images with arbitrary materials. Due to the lack of ground truth of the surface normals, we further show the 3D reconstruction results of our
estimated surface normal maps using [66], to clearly show the details. The contrast of the images is adjusted for easy visualization.
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Fig. 12. Results of the multi-time reconstructed images and surface-
normal maps. For the object “Cow”, material A is set to Alumina-oxide,
and material B is set to White-diffuse-bball, while for the object “Pot2”,
the materials A and B are Neoprene-rubber and Pink-felt, respectively.
In the second-round of rendering, the subscript represents the material
of the first-round rendering.

Fig. 11 the qualitative results of our method, on estimat-
ing surface normals and reconstructing images. Similar to
the above experiments, our GR-PSN was trained with 32
input images, and tested with 64 input images randomly
selected from all 253 images of the Light Stage Data Gallery.
Note that the objects “Helmet”, “Plant”, and “Fighting” are
down-sampled to half the spatial resolution, because the
original resolution (1024 × 1024) is too large to process.

As shown in Fig. 11, the estimated surface normals and
their Mesh reconstructions can accurately report the shapes
of the objects, such as the screws of the object “Helmet”,
and the fiber skirt of the object “Standing”. However, we
also observe that some noise exists on the cloak of the object
“Standing”. The compromised surface normal estimations
can be attributed to the down-sampling of the input im-
ages and camera noise resulting from high sensitivity (ISO)
settings when capturing images in low-light conditions.
Furthermore, it can be seen that the reconstructed images
with different surface materials show reasonable highlights
and shadows. The details are still clear in the reconstructed
images, such as the leaves of the object “plant”, and the
rivet of the object “Helmet”. We note that the reconstructed
images with some metal-like materials are quite dark, which
appears to lack realism (also see the reconstructed images
of the object “Buddha” in Fig. 7). This is because our
ReconstructNet generates the reconstructed images from
the surface normals, encoded materials, and light directions
explicitly, without the impact of global noise. In contrast, a
real-photoed cannot totally avoid the global noise, such as
natural illuminations and inter-reflections from other objects
(e.g., the background), which may influence the calculation
of surface normals.

TABLE 6
Performance on the DiLiGenT dataset [26] using 96 images, in terms of
average MAE across ten objects. We conduct tests with our GR-PSN
and PS-FCN (Norm.) [15], which are trained with full and few samples
respectively, using different augmented rendered data via our method.

GR-PSN PS-FCN (Norm.) [15]
Augmentation - 50%↑ 100%↑ 300%↑ - 50%↑ 100%↑ 300%↑
Full (84,360) 6.55 6.55 6.56 6.59 7.39 7.38 7.42 7.44
Few (844) 8.05 7.50 7.44 7.41 8.66 8.18 8.12 8.02

4.8 Further exploration

In the experiments, it is interesting to note the performance
of using the reconstructed images as the inputs of our
model. The results are illustrated in Fig. 12, which show the
predicted normal map and rendered images based on our
method, by using the reconstructed images of the objects
“Cow” and “Pot2” as the inputs. As shown in Fig. 12, dif-
ferent generation paths may cause different results (e.g., for
simple description, the two different materials are denoted
as A and B): original → Ã → ÃA, original → Ã → B̃A,
original → B̃ → ÃB , and original → B̃ → B̃B . Compared
with the predicted surface-normal maps with the original
images, our surface-normal maps, generated by inputting
the reconstructed images in the second round, only show
slight differences. Furthermore, the REL between rendered
images with the same material (from different paths, i.e., Ã
and ÃA, ÃA and ÃB , B̃ and B̃A, B̃B and B̃A) is promising.

With the results of Fig. 12, we further test the results
of the re-rendered images. We first use GR-PSN to render
images with new random materials in the training dataset.
Specifically, we augmented the training dataset from each
object with two materials to three (50%↑), four (100%↑),
and eight (300%↑) materials in MERL BRDFs [22], while
maintaining the original lighting conditions across the ren-
dered images. Note that the original training dataset already
contains a substantial 84,360 samples, which is generally
sufficient for training a photometric stereo network. There-
fore, we also randomly selected 1% of the original samples
(844) to examine the augmented training dataset via GR-
PSN. In cases where the training data is scarce, the training
epochs are adjusted to 400, and the learning rate is halved
every 40 epochs. Notably, the number of epochs across
different augmented datasets is also adjusted to ensure the
equivalent total training processing. Detailed results can be
found in Table 6.

As shown in Table 6, the augmented training dataset
(few samples) effectively enhances the surface normal esti-
mation performance for both GR-PSN and PS-FCN (Norm.)
[15]. It demonstrates the augmented samples rendered
through our method contribute to a more diverse represen-
tation of materials, which may mitigate overfitting and help
the training process on the condition of inadequate training
samples. However, the augmented training dataset with
full samples shows little changes. This could be explained
by the fact that the training samples are already sufficient
to optimize both GR-PSN and PS-FCN (Norm.) [15] while
bringing additional rendered samples does not increase the
knowledge of surface normals but potentially introducing
errors in shading cues. The experiments described above
indicate that the re-rendered samples generated by GR-PSN
could potentially benefit the learning process of networks
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when the available training samples are insufficient.

5 CONCLUSION

In this paper, we have proposed a cascaded framework, for
learning both the surface normals and the reconstructed
images of objects, using the proposed GeometryNet and
ReconstructNet, respectively. ReconstructNet provides ad-
ditional supervision for surface-normal estimation, forming
a closed-loop structure, which can improve the performance
of both tasks. Furthermore, our method can render im-
ages with different materials. The ablation studies illus-
trate the effectiveness of the additional ReconstructNet, as
well as our network architecture. Extensive experiments on
the most widely used DiLiGenT benchmark dataset have
demonstrated that our method outperforms other calibrated
photometric stereo methods. Experiments on the synthetic
test data and the real-photoed datasets also show that our
method can produce photorealistic rendered photometric
images.

A future work of our method is that all trained samples
are rendered by the MERL dataset [22], which only includes
100 kinds of real-world materials, hardly spans all materials
existing in nature. Therefore, how to expand our method
into the dataset with more materials in the natural world
and whether it can further improve the performance of GR-
PSN is still an open question.
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