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Abstract
Photometric stereo aims to recover the surface normals of a 3D object from various shading cues, establishing the relationship
between two-dimensional images and the object geometry. Traditional methods usually adopt simplified reflectance models
to approximate the non-Lambertian surface properties, while recently, photometric stereo based on deep learning has been
widely used to deal with non-Lambertian surfaces. However, previous studies are limited in dealing with high-frequency
surface regions, i.e., regions with rapid shape variations, such as crinkles, edges, etc., resulted in blurry reconstructions. To
alleviate this problem, we present a normalized attention-weighted photometric stereo network, namely NormAttention-PSN,
to improve surface orientation prediction, especially for those complicated structures. In order to address these challenges,
in this paper, we (1) present an attention-weighted loss to produce better surface reconstructions, which applies a higher
weight to the detail-preserving gradient loss in high-frequency areas, (2) adopt a double-gate normalization method for non-
Lambertian surfaces, to explicitly distinguish whether the high-frequency representation is stimulated by surface structure
or spatially varying reflectance, and (3) adopt a parallel high-resolution structure to generate deep features that can maintain
the high-resolution details of surface normals. Extensive experiments on public benchmark data sets show that the proposed
NormAttention-PSN significantly outperforms traditional calibrated photometric stereo algorithms and state-of-the-art deep
learning-based methods.
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1 Introduction

Three-dimensional (3D) shape recovery is a pivotal prob-
lem in computer vision (Jian et al., 2019). Unlike binocular
or multi-view stereo that use different scenes from view-
points to triangulate sparse 3D points, photometric stereo
(Woodham, 1980) recovers pixel-wise surface normals from
a fixed scene under varying shading cues, which prevails in
recovering fine details of the surface and dense reconstruc-
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tion. Early photometric stereo algorithms used an assumption
of an ideal Lambertian reflectance (diffuse surface) model
(Woodham, 1980). However, real-world objects barely have
the property of Lambertian reflectance. To deal with the lim-
itations, subsequent methods focus more on non-Lambertian
surfaces with more flexible reflectance functions, adopting
the bidirectional reflectance distribution functions (BRDFs)
to model general reflectance (Chung & Jia, 2008; Ikehata &
Aizawa, 2014; Higo et al., 2010). However, these traditional
models are accurate for limited categories of materials and
suffer from unstable optimization.

Meanwhile, deep learning frameworks have shown poten-
tial abilities in handling surface normal reconstruction (Wu et
al., 2020; Ju et al., 2021). For photometric stereo, researchers
have investigated how to learn general reflectance models
through deep neural networks. DPSN (Santo et al., 2017)
first addressed non-Lambertian photometric stereo using a
deep fully connected network, to learn the surface normal in a
per-pixelmanner. Later, a series ofmethods employed convo-
lutional neural networks (CNNs) to better utilize the adjacent
information embedded in images, such as PS-FCN (Chen et
al., 2018) and CHR-PSN (Ju et al., 2022). However, previous
deep learning-based methods employed uniform cosine loss
functions regardless of various surface structures and usually
produce large errors in high-frequency regions, i.e., regions
with rapid shape variations, such as crinkles and edges. We
argue that the blur and errors are caused by the following two
reasons: (1) the widely used Euclidean-based loss functions
hardly constrain the high-frequency representations, because

of the “regression-to-the-mean” problem (Isola et al., 2017),
which results in blurry and over-smoothed images (Blau &
Michaeli, 2018;Wang et al., 2004), and (2) previous learning-
based photometric stereo methods usually pass the input
from the high-low-high resolutions, i.e., through an encoder-
decoder architecture, which leads to the loss of details of
prediction and causes the blur (Sun et al., 2019).

How to distinguish the high-frequency regions in an obser-
vation, caused by structure or texture, is of high importance.
In fact, two conditions for identifying high-frequency rep-
resentations inspire the AttentionNet: the complex surface
structure (Fig. 1a) and the spatially varying BRDFs (Fig. 1b).
For a complex structure, the variations of the surface normals
are large, and may be considered having high-frequency rep-
resentations. On the other hand, the texture of an object may
cause its BRDFs to change rapidly in a flat or smooth region.
Our preliminary work, Attention-PSN (Ju et al., 2020b),
focuses on the structure aspect and does not consider those
surfaces with spatially varying BRDFs. The high values in
an attention map, in this case, may cause large errors.

In this paper, we extend Attention-PSN (Ju et al., 2020b)
to handle non-Lambertian surfaces with spatially varying
BRDFs, namely NormAttention-PSN, which uses our pro-
posed double-gate observation normalizationmethod. In Fig.
1(a), our NormAttention-PSN and Attention-PSN (Ju et al.,
2020b) can produce more accurate results, but Attention-
PSN cannot achieve good results in Fig. 1(b). We propose
an attention-weighted loss in a self-supervised manner for
NormAttention-PSN. The structure of NormAttention-PSN,

(a)

(b)

Fig. 1 Examples of the predictions and error maps on a high-frequency
structure regions and b spatially varying BRDFs. We compare our
method with Attention-PSN (Ju et al., 2020b), PS-FCN (Norm.) (Chen
et al., 2020a), PX-Net (Logothetis et al., 2021), GPS-Net (Yao et al.,
2020), and CNN-PS (Ikehata, 2018). The third column shows the 3D

reconstruction results of our estimated surface normalmaps using (Sim-
chony et al., 1990) and the generated attentionmaps. The numbers reveal
the mean angular error in degrees. Our method obviously produces a
more accurate estimation under both conditions
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which is composed of two associated subnetworks, called
GeometryNet and AttentionNet, respectively, is shown in
Fig. 2. In short, GeometryNet reconstructs the surface nor-
mals of an object from calibrated photometric stereo images,
while AttentionNet generates an attention map that provides
the weights for the pixel-wise attention-weighted loss. The
attention-weighted loss is composed of the angular loss and
the gradient loss with adaptive weights. A pixel, which has
a large value in the attention map, contains high-frequency
information and should have a high detail-preserving level.
Consequently, a higher weight on the gradient loss and a
higher penalty on the high-frequency information should be
applied.

The preliminary version of this work (Ju et al., 2020b)
presents an attention-weighted loss in a self-supervised
manner for each pixel, which assigns larger weights of detail-
preserving penalty for high-frequency regions, to maintain
the completeness of the high-frequency expression. In this
paper, our explorations include three parts: (1) We extend
Attention-PSN (Ju et al., 2020b) to NormAttention-PSN by
adopting a double-gate observation normalization method,
which can remove the impact of spatially varying BRDFs
on non-Lmabertian surfaces. (2) We employ a parallel high-
resolution structure with multi-scale max-pooling, instead
of tandem networks, inspired by the great success of the
High-resolution Net (Sun et al., 2019) in human pose estima-
tion. (3) We present a detailed network analysis and ablation
experiments of each part of our method. We provide more
results using both synthetic and real data sets.

Experiments have demonstrated the effectiveness of the
proposed NormAttention-PSN. Our method avoids the blur
in high-frequency surface regions and improves the accuracy
of surface normal estimation, outperforming state-of-the-art
calibrated photometric stereo approaches on public bench-
mark data sets.

2 RelatedWork

2.1 Image FormationModel and Lambertian
Photometric Stereo

An imagingmodel for photometric stereo establishes the rela-
tionship between the 3D surface normal n ∈ R

3 and 2D
visual observations {m1, m2, · · · , mt } in a per-pixel manner.
For a pixel mi , i ∈ {1, 2, · · · , t} in the visual observa-
tion of a real-world object, viewed from direction v and
lighted by the illumination with direction li with intensity ei ,
i ∈ {1, 2, · · · , t}, the imaging model can be approximated
as follows:

mi = sρ (ei , n, li , v)max
(
n�li , 0

)
+ εi , (1)

where ρ (ei , n, li , v) is the bidirectional reflectance distri-
bution function (BRDF), s is a binary function for judging
cast shadows (s = 0 for cast shadows, otherwise, s = 1),
max

(
n�l i , 0

)
accounts for the attached shadows, and εi

reveals the noise and global illumination effect that are barely
represented by the BRDF, such as inter-reflections (Nayar et
al., 1991).

As an inverse problem, the goal of photometric stereo
is to recover the surface orientations from a combination
of reflectance and illuminations in multiple observations.
Woodham (Woodham, 1980) firstly proposed a photomet-
ric stereo algorithm based on the least square method. Under
the Lambertian assumption, the error term εi is ignored and
BRDF has the diffuse property, where the measured intensity
is proportional to the cosine of the angle between the inci-
dent light and the surface normal, but irrelevant to the viewing
direction.Therefore, the imagingmodel canbe simplified and
easily solved by the least squaremethod. This reveals that the
image formation model can be cast into a system of linear
equations, which can be solved. However, knowing how to
make photometric stereo applicable to non-Lambertian real-
world objects is more practical for the community.

2.2 Non-Lambertian Photometric Stereo

Tomeet the needof real-world general reflectance, researchers
have investigated different strategies. Commonly referring
to the taxonomy of Shi et al. (2019), we briefly divide
non-Lambertian photometric stereo techniques into three cat-
egories: sophisticated reflectance methods, outlier rejection
methods, and deep learning methods. More comprehensive
surveys of photometric stereo can be found in Ackermann et
al. (2015), Herbort and Wöhler (2011), Zheng et al. (2020).

2.2.1 Sophisticated Reflectance Methods

It is a straightforward idea to approximate real-world non-
Lambertian surfaces using sophisticated reflectance models.
Along this direction, researchers proposed fitting a nonlin-
ear analytic BRDF, such as the Torrance-Sparrow model
(Georghiades, 2003), the specular spike model ((Yeung et
al., 2015), and the Blinn-Phong model (Tozza et al., 2016),
etc. Furthermore, many studies have employed the gen-
eral properties of BRDFs, such as monotonicity (Shi et al.,
2012), isotropy (Higo et al., 2010), and bilateral symmetry
(Alldrin & Kriegman, 2007), to deal with multiple types of
surface materials. Some variants of isotropic BRDFs were
proposed in Chandraker et al. (2012), Alldrin and Kriegman
(2007), Holroyd et al. (2008). Shi et al. (2014) proposed a
bi-polynomial model and designed an iterative strategy to
represent low-frequency non-Lambertian reflectances. Ike-
hata and Aizawa (2014) further approximated BRDFs by
using bivariate functions to deal with the instability of the
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GeometryNet 

Fig. 2 Overview of our method. The attention map provides the weights for the pixel-wise attention-weighted loss. The surface normals and the
corresponding attention map are learned jointly by minimizing the attention-weighted loss

estimation. However, these handcrafted analytic and empiri-
cal reflectance models are generally more useful for limited
categories of reflectance, as the reflectance models vary dra-
matically from material to material, and these methods use
numerous computations, due to the complicated solution pro-
cess.

2.2.2 Outlier Rejection Methods

Outlier rejection methods assume that most regions on a sur-
face obey, or can be approximated by, the diffuse reflectance
model (Lambertian), and then those non-Lambertian regions
(such as specular highlights and cast shadows) are consid-
ered as outliers, which are local and sparse. Early studies
estimated surface normals by selecting three images, with
the lowest specularity and the closest Lambertian appearance
from multiple images (Solomon & Ikeuchi, 1996; Barsky &
Petrou, 2003).Afterwards,Wu et al. (2010) proposed a robust
principal component analysis (RPCA)method to decompose
images into the minimized-rank Lambertian composition
(Basri & Jacobs, 2003) and the non-Lambertian sparse out-
liers. Along this direction, Ikehata et al. (2012) employed a
fixed rank of three, instead of minimizing the rank, which
can achieve better computational stability. Mukaigawa et
al. (2007) utilized the random sample consensus method
to discard specular highlights and shadows. Furthermore,
other outlier rejectionmethods, such asmaximum-likelihood
estimation (Verbiest & Van Gool, 2008), shadow cuts (Chan-
draker et al., 2007), maximum feasible subsystem (Yu et
al., 2010), and taking the median values (Miyazaki et al.,
2010), also effectively remove sparse outliers. Although
robust methods are effective, broad and soft specular high-
lights, such as non-Lambertian diffuse reflectance, are hard
to be detected as outliers. In addition, these methods usually

need a large number of observed images to achieve effective
removal.

2.2.3 Deep Learning Methods

Very early studies, using neural networks, in the community
of photometric stereo research can be found in (Iwahori et
al., 1993; Cheng, 2006). Although the methods are effective,
they require per-material pretraining or restricted Lamber-
tian reflectance. With the recent great development of deep
learning, Santo et al. Santo et al. (2017) were the first to
use the modern deep neural network (DNN) architecture
to predict surface normals from photometric stereo images
and explore the simultaneous prediction of reflectance in
Santo et al. (2020). However, the employed fully connected
architecture (Santo et al., 2017) hardly benefits from the
information embedded in the neighborhood of a surface
point, and depends on a pre-defined set of illumination direc-
tions.

More recently, convolutional neural networks (CNNs)
have been more widely introduced into the research of pho-
tometric stereo (Chen et al., 2018; Ju et al., 2020b; Taniai
& Maehara, 2018; Ikehata, 2018; Ju et al., 2021; Li et
al., 2019; Zheng et al., 2019; Wang et al., 2020). PS-FCN
(Chen et al., 2018, 2020a; Ju et al., 2022) extracted features
from a combination of observed images and illuminations,
and aggregated the arbitrary features by max-pooling. Some
methods (Ikehata, 2018; Li et al., 2019; Zheng et al., 2019)
used another approach, called the observation map, which
ranges in observation intensities, according to the light direc-
tions, to overcome the problem of requiring a fixed number
of inputs. Differing from the above supervised methods,
Taniai and Maehara Taniai and Maehara (2018) proposed
an unsupervised method, which minimizes the reconstruc-
tion loss between original input images and the inverse
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rendered images. In addition, Yao et al. Yao et al. (2020)
introduced GCN (Graph Convolution Network) for learning-
based photometric stereo, named GPS-Net. However, the
above methods, due to employing the same learning strat-
egy and sampling-oriented loss for all pixels on the various
surfaces, fail to satisfactorily handle high-frequency regions.
In contrast, our previous work (Ju et al., 2020b) proposed
an adaptive attention-weighted loss to improve the perfor-
mance on high-frequency areas, providing suitable penalty
strategies for different surfaces. In this paper, we further
extend the attention-weighted loss to handle surfaces with
spatially varying BRDFs, and propose a high-resolution net-
work structurewithmulti-scalemax-pooling.We also show a
more detailed network analysis, ablation studies, and exper-
imental results.

3 Methodology

In this section, we present our NormAttention-PSN, which
can better handle calibrated photometric stereo for high-
frequency structures, such as crinkles and edges. We first
introduce the proposed double-gate observation normal-
ization method and the architecture of our framework, as
shown in Fig. 2, which can be divided into two networks,
GeometryNet and AttentionNet. Then, we will present the
attention-weighted loss and the implementation details of
our proposed framework.

3.1 Double-gate Observation Normalization

In fact, the real scenes of an object always contain spatially
varying BRDFs (e.g., the stripes on the back of “Cat”, as
shown in Fig. 1), which are considered as high-frequency
regions in our preliminary Attention-PSN model (Ju et al.,
2020b). However, the corresponding surface normals in these
regions of spatially varying BRDFs should be smooth, and
should not be changed with the varying surface reflectance.
Therefore, there is a negative impact on Attention-PSN,
which assigns these regions with higher weights, resulting
in a high detail-preserving loss.

To deal with this problem, we adopt a double-gate obser-
vation normalization method to remove the influence of spa-
tially varying BRDFs and maintain the reasonable shading
cues for the photometric stereo network. After the double-
gate observation normalization process, our AttentionNet
will only be stimulated by real high-frequency structures,
such as crinkles and edges, rather than smooth regions with
textures. Furthermore, another advantage is that the normal-
ization method is beneficial to the whole training process,
because photometric stereo methods are usually trained on
surfaces with homogeneous BRDF and barely handle sur-
faces with steep color or pattern changes.

In fact, the observation normalization method was first
used in PS-FCN (Norm.) (Chen et al., 2020a), which com-
putes the normalized pixel m′

i of observations Mi , i ∈
{1, 2, · · · , t}, as follows:

m′
i = mi√

m2
1 + · · · + m2

t

, i ∈ {1, 2, · · · , t}, (2)

where m1, m2, · · · , mt are the pixel intensities of the same
position in observations M1, M2, · · · , Mt .

If the surface materials are under the Lambertian assump-
tion, then the BRDF ρ(ei , n, li , v) (in Eq.1) degenerates to
a constant albedo ρ, and the observation mi = ρ max (n� li ,
0) (Woodham, 1980). In this case, the normalized pixel m′

i
can be computed as follows:

m′
i = max

(
n�li , 0

)
√
max

(
n�l1, 0

)2 + · · · + max
(
n�lt , 0

)2 , (3)

where the influence of albedo is removed.
However, the model mi = ρ max (n�li , 0) is not appli-

cable to non-Lambertian conditions. Although most of the
regions are close to the Lambertianmodel, those regionswith
specular highlights may be impacted after the normalization
process. This is due to the fact that observations without
highlights will be stimulated and affected by other observa-
tions with changing specular highlights, when performing
observation normalization. We visualize this problem in Fig.
3. The yellow boxes represent specular highlight regions,
where the original observation normalization method (Chen
et al., 2020a) cannot handle it well. Although the max-
pooling operation used in the network can naturally ignore
the non-activated features and only aggregate themost salient
features, the suppressed observations are not equal to the
suppressed features, e.g., the changing appearance of an
observation may cause a larger feature value (such as the
yellow box of the object “Ball” by the original normalization
method).

Therefore, we propose an improved method, namely
double-gate observation normalization, to better handle the
non-Lambertian surfaces. As illustrated in Eq. (2), a pixel
under other light directions due to the specular highlightswill
enlarge the denominator, which causes the pixel on the nor-
malized observation suppressed. To solve this, we propose a
double-gate observation normalization method, which only
uses the non-specular highlights and non-shadow observa-
tions to calculate the normalization. Concretely, inspired by
the position threshold strategy (Shi et al., 2019), we set two
gates, which are the corresponding positions of the lowest
10% and the highest 10% grayscale values. For a pixel mi , if
its grayscale value is between the two gates, then we retain
it in the denominator of Eq. (2), otherwise, the pixel is dis-
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Fig. 3 Visual results based on the original normalizationmethod (Chen
et al., 2020a) and the proposed double-gate normalization method. The
red boxes are regions with spatially varying BRDFs. The yellow boxes
are regions with specular highlights (Color figure online)

carded and is not involved in calculating the denominator.
This is because specular highlights and cast shadows often
have overexposed and dark grayscale values, which can be
rejected by the two gates. Therefore, the double-gate obser-
vation normalization process can be expressed as follows:

m′
i = mi√∑

k m2
k

, i ∈ T , k ∈ S, (4)

where the set S is a subset of T = {m1, m2, · · · , mt } and is
controlled by the two gates, such thatmi ∈ S ifGate(P10) <

mi < Gate(P90), for i = 1, 2, · · · , t . The percentile P
denotes a positional indicator and divides observations of all
samples into two parts, where P∗ means that *% of samples
are smaller than it. The percentile is rounded up if it is not
an integer. It is worth noting that removing some grayscale
values from the denominator will affect the magnitude of the
normalized observation and lead to degraded performance.
We solve this problem by multiplying the normalized obser-
vation by

√
s/t , where s and t are the number of elements in

the sets S and T , respectively. Furthermore, we utilize this
strategy with different numbers of input images in training
and testing.

As shown in Fig. 3, we compare the results of our double-
gate observation normalization method with the original
observation normalizationmethod (Chen et al., 2020a). It can
be seen that our method achieves more reasonable normal-
ization results. On the regions with spatially varying BRDFs

(red boxes), such as the pattern on the back of the object
“Cat”, both methods can remove the effects caused by mate-
rial changes. However, on the regionwith specular highlights
(yellow boxes), such as the arm of the object “Reading” and
the middle of the object “Ball”, the position of specular high-
lights under other light directions will be suppressed after the
previous normalization method (Chen et al., 2020a). On the
contrary, our double-gate observation normalization method
will avoid this condition.

3.2 Network Architecture

The proposed NormAttention-PSN is composed of two
networks, GeometryNet and AttentionNet, which generate
surface normals and attention maps, respectively. The details
of these two networks are described below.

3.2.1 GeometryNet

GeometryNet aims to predict the surface normals Ñ of an
object. This network is composed of an extractor fge, amulti-
scalemax-pooling fusion layer, and a regressor fgr , as shown
in Fig. 4.

Given t normalized observations M ′
1, M ′

2, · · · , M ′
t ∈

R
3×H×W , where H × W is the spatial resolution of the

observations, and each observation has three channels, i.e.,
RGB, we expand each illumination direction from li ∈R

3 to
a 3-channel illumination tensor Li ∈ R

3×H×W , having the
same spatial resolution as the normalized observation image
M ′

i , following the previous works (Chen et al., 2018; Ju et
al., 2020b; Wang et al., 2020). Here, we first concatenate
the normalized observations M ′

i with the original photomet-
ric stereo images Mi , forming the tensors �i ∈ R

6×H×W .
We then concatenate it with the corresponding illumination
directions L′

i to form the tensors �i ∈ R
9×H×W .

The reason we additionally concatenate the original
images Mi is that the double-gate observation normalization
may affect the shading cues for the photometric stereo net-
work. Discarding some grayscale values in the denominator
in Eq.(4) can be viewed as a kind of nonlinear process-
ing, which influences the learning pattern of the photometric
stereo network. However, the proposed double-gate observa-
tion normalization method provides more decent results on
non-Lambertian surfaces, especially on regionswith specular
highlights. In fact, the strategy of combining the normalized
images M ′

i with the original images Mi will improve the
accuracy of estimating surface normals.

Instead of passing the input through layers from a high to
a low resolution, which are connected in series, followed
by increasing the resolution, we employ a parallel, high-
resolution structure for the extractor fge, inspired by the
significant improvement achieved in the human pose estima-
tion task (Sun et al., 2019). Our experimentswill demonstrate
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Fig. 4 The details of the high-resolution extractor fge and regressor fgr of GeometryNet

that extracting high-resolution features are essential to the
accuracy of the per-pixel surface normal estimation. The
extractor fge can be seen as an t-multi-branch shared-weight
feature extraction network, which can be expressed as fol-
lows:

�
f r
i ,�hr

i ,�
qr
i = fge(�i ; θge), i ∈ T , (5)

where θge represents the learnable parameters of the paral-
lel high-resolution extractor fge. We employ fge to extract
features at three different scales simultaneously, including
the full-resolution features �

f r
i ∈ R

H×W×64, the half-

resolution features �hr
i ∈ R

1
2 H× 1

2 W×128, and the quarter-

resolution features �
qr
i ∈ R

1
4 H× 1

4 W×256, respectively (see
Fig. 4 ). We use convolutional layers, with a stride of 2 (2
× downsampling) or 4 (4 × downsampling) for the down-
sampling operations, and adopt bilinear upsampling for the
upsampling operations, with 1 × 1 convolutional layers to
reduce the number of channels of the features. It is worth
noting that the fusion of the features with different scales
to form features of the same resolution is performed through
skip connection rather than the concatenation operation. Fur-
thermore, we add residual blocks (He et al., 2016) to the
parallel high-resolution extractor. Residual blocks can effec-
tively avoid vanishing gradients in deep networks, thereby
further improving the accuracy of the estimated surface nor-
mals.We add the skip-connection operations to form residual
blocks in each resolution branch. As shown in Fig. 4, there
are three, two, and one residual blocks on the full-resolution
branch, the half-resolution branch, and the quarter-resolution
branch, respectively.

To enable our network to handle an arbitrary number of
input observations, we apply max-pooling (Wiles & Zisser-
man, 2017; Chen et al., 2018; Wang et al., 2020) to fuse the t
branches of multi-scale features to form a single branch. The
use of max-pooling can extract the most salient information

from all the features, while average-pooling (Hartmann et al.,
2017) will smooth out useful features and the generated fea-
tures may be impacted by those non-activated features (Chen
et al., 2018). In our method, we apply max-pooling to the
three different scales to handle the t branches of multi-scale
features. Denoting p as the pixel position in the extracted
features, then we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
f r
max =

H×W⋃
p

max(� f r
1, p ,�

f r
2, p , . . . ,�

f r
t, p)

�hr
max =

1
2 H× 1

2 W⋃
p

max(�hr
1, p ,�hr

2, p , . . . ,�hr
t, p)

�
qr
max =

1
4 H× 1

4 W⋃
p

max(�qr
1, p ,�

qr
2, p , . . . ,�

qr
t, p)

, (6)

where �
f r
max , �hr

max , and �
qr
max are the fused features. Then,

the regressor, fgr with the learnable parameters θgr , takes

�
f r
max ,�hr

max , and�
qr
max as inputs and regresses the estimated

surface normals Ñ , as follows:

Ñ = fgr (�
f r
max,�

hr
max,�

qr
max; θgr ). (7)

Figure 4 shows that the resolution of the multi-scale
features is adjusted by the transposed convolution opera-
tion, which upsamples the low-resolution features �hr

max and
�

qr
max to the full resolution of H×W . In ourmethod, concate-

nation is employed to fuse the twoupsampled features and the
full resolution feature, instead of using the skip connection
in the extractor. The regressor fgr uses an L2-normalization
layer at the output, which makes the per-pixel estimated sur-
face normal ñ ∈ Ñ be a unit vector.

123



International Journal of Computer Vision

3.2.2 AttentionNet

AttentionNet aims to generate attention maps of an object�.
Our previous Attention-PSN (Ju et al., 2020b) fails for han-
dling very simple structures, where the specular highlights
are the only high-frequency information and therefore acti-
vate the attention map. To solve this problem, we employ an
outlier rejection-based strategy forAttentionNet, to eliminate
the specular highlights from the inputs of AttentionNet. Con-
cretely, we apply dual normalization to the input images of
AttentionNet. In Sect. 3.1, we only discard the smallest 10%
and the highest 10% grayscale values in the denominator of
Eq. (2), while retaining all grayscale values in the numera-
tor. However, in the double-gate observation normalization,
we discard the numerator and denominator (so-called dual
double-gate observation normalization), as follows:

m′′
k = mk√∑

k m2
k

, k ∈ S. (8)

Due to discarding the numerator in the observation nor-
malization process, we actually obtain s normalized images
M ′′

1 , M
′′
2 , · · · , M ′′

s from M1, M2, · · · , Mt . Therefore, the
extractor fae of the AttentionNet only has s-multi-branch,
which has fewer branches than the t-multi-branch extrac-
tor fge of the GeometryNet. In fact, the proposed dual
double-gate observation normalization method does not dis-
card the whole input images with rejected pixels, but only
the pixels themselves, to retain a sufficient number of nor-
malized images. i.e., the following pixel mi+1 may occupy
and replace the rejected pixel mi (i, i + 1 ∈ S). Therefore,
the normalized images may fuse multiple original photo-
metric stereo images. Actually, this operation is fatal for
photometric-based normal estimation tasks because the shad-
ing cues are disturbed. Fortunately, the AttentionNet only
learns the frequency information, while paying no attention
to shading cues needed by photometric stereo. Therefore,
we can directly use these images normalized by the rejected
double-gate observation normalization. In Fig. 5, we show
an example of using different normalization methods. It
can be seen that on the objects “Ball” and “Reading”, the
double-gate normalized method cannot remove the high-
lights, and the Attention map then records all the highlights
as high-frequency information, which affect the normal map
estimation. However, the dual double-gate normalization
removes the influence of highlights and generates a more
reasonable attention map.

Similar to GeometryNet, AttentionNet is composed of an
extractor fae, a fusion layer based on max-pooling, and a
regressor far . In the extractor, we first concatenate the fre-
quency information�

f r
k with the inputM ′

k. The extractor fae

extracts the frequency information from the k-th normalized
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Fig. 5 The results of using double-gate normalization and dual double-
gate normalization in AttentionNet. The yellow boxes represents the
region with specular highlights (Color figure online)

observation, as follows:

�
f r
k = fae(M ′

k, fep(M ′
k); θae), k ∈ S, (9)

where fae is formed by two 3×3 convolutional layers, fol-
lowed by a one-layer transposed convolutional network with
learnable parameters θae, and fep is an edge-preserving layer,
which computes the gradient of M ′

k. The edge-preserving
layer is used to strengthen the high-frequency information
of input images. We concatenate the high-frequency infor-
mation fep(M ′

k) to the feature after the convolutional layer.

Note that the output features �
f r
k ∈ R

H×W×64 are of full
resolution. We then apply max-pooling to fuse the features
of the s branches, � f r

1 , . . . ,�
f r
s , as follows:

�
f r
max =

H×W⋃
p

max(� f r
1, p ,�

f r
2, p , . . . ,�

f r
s, p). (10)

Given the fused feature �
f r
max , the three-layer 3×3 CNN

regressor far , with learnable parameters θar , finally outputs
the attention map � of the object, as follows:

� = far (�
f r
max; θar ). (11)

The attention maps� ∈ R
H×W×1, provide the pixel-wise

weights ω for the attention-weighted loss. In our method,
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AttentionNet is learned in a self-supervised way by mini-
mizing the attention-weighted loss, which will be introduced
in Sect. 3.3.

3.3 Attention-Weighted Loss

We optimize the parameters θge, θgr , θae, and θar by mini-
mizing the attention-weighted loss, as follows:

Lattention = 1

H W

H W∑
p

Lp, (12)

where Lp is the per-pixel loss at the pixel position p, and
H × W is the resolution of the observations. Lp is computed
as follows:

Lp = λωpLgradient(np, ñ p) + (1 − ωp)Langular(np, ñ p),

(13)

where ωp is the weight obtained from the generated atten-
tion map � at the pixel position p. Similarly, np and ñ p

are the surface-normal vector at pixel p of the ground-truth
N and the estimated surface normals Ñ , respectively. λ is
an additional hyperparameter, which balances the angular
and gradient losses and is set to 0.125, empirically (see
Sect. 4.2.1), in our experiments.

Lgradient(np, ñ p), the first term of Lp in Eq. (13), defines
the gradient loss between the ground truth np and the esti-
mated surface normal ñ p, as follows:

Lgradient(np, ñ p) = ‖g(np(x, y), ξ) − g(Ñp(x, y), ξ)‖2,
(14)

where (x, y) are the coordinates of position p. We define the
gradient g(np(x, y), ξ) as follows:

g(np(x, y), ξ) = ‖np(x+ξ, y) − np(x, y)

ξ
‖1

+ ‖np(x, y+ξ) − np(x, y)

ξ
‖1,

(15)

where ξ is set to 1 in our setting. The gradient loss can sharpen
the discontinuous or high-curvature surfaces and prevent
these high-frequency regions from being blurred (Ummen-
hofer et al., 2017). We utilize the gradient loss to constrain
the completeness and consistence of the high-frequency fea-
tures. However, applying the same weight to the gradient
loss, without using attentionmechanisms, will result in larger
errors in estimating the surface normals. This is due to the
consequence of suppressing the penalty from the angular
losses.Our preliminarywork (Ju et al., 2020b) has proved that
using only the gradient loss will cause the non-convergence

of a photometric stereo network, because gradient loss only
focuses on the change between the adjacent surface normals,
not on their orientations.

Langular(np, ñ p), the second term in Lp, is a commonly
used cosine similarity loss, which directly optimizes the
angular error between the ground truth np and the estimated
surface normal ñ p, as follows:

Langular(np, ñ p) = 1 − ñ p � np, (16)

where � represents the dot-product operation. If the pre-
dicted surface normal ñ p has a similar orientation to
the ground truth np, ñ p � np will be close to 1 and
Langular(np, ñ p) will approach 0. By minimizing the above
attention-weighted loss, our method learns self-supervised
attention maps for different regions and brings a small angu-
lar error.

Algorithm 1 NormAttention-PSN Algorithm
Input: Photometric images M1, M2, · · · , Mt with illuminations l1, l2,
· · · , lt , hyperparameter λ.
for j = 1 : Num_of_epochs
1. Compute the normalized M ′

1, M
′
2, · · · , M ′

t via Eq. (4);
2. Compute the normalized M ′′

1 , M
′′
2 , · · · , M ′′

s via Eq. (8);
3. Expand illuminations to L1, L2, · · · , Lt ;
4. Obtain Ñ from M ′

1, M
′
2, · · · , M ′

t , M1, M2, · · · , Mt , and L1, L2, · · · ,
Lt , via GeometryNet fge and fgr , as shown in Eqs. (5), (6), and (7);
5. Obtain � from M ′′

1 , M
′′
2 , · · · , M ′′

s via AttentionNet fae and far , as
shown in Eqs. (9), (10), and (11);
6. Extract ωp and ñ p from � and Ñ , at the pixel position p;
7. Minimize the parameters θge, θgr , θae, and θar , via the attention-
weighted loss Eq. (13);
8. Aggregate � and Ñ from all ωp and ñ p.
end for
Output: Estimated surface normal map Ñ , attention map �.

Our network, with 4.63M parameters, was implemented
using PyTorch. The Adam optimizer is used with the default
settings (β1 = 0.9 andβ2 = 0.999) on a singleRTX2080GPU.
The initial learning rate is set to 0.002, and divided by 2 every
5 epochs. We trained the model using a batch size of 32, for
35 epochs. The number of input images for training is 32. In
addition, we set the spatial resolution H × W to 32 × 32 in
training. The algorithm of the proposed NormAttention-PSN
is summarized in Algorithm 1.

4 Experiments

In this section, we present the experiments and analysis
for our proposed framework. To evaluate the quantitative
performance of our method, some widely used perfor-
mance metrics are used to measure accuracy. We adopt
the mean angular error (MAE) in degrees to evaluate the
accuracy of the estimated surface normals, where MAE =
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1
H W

∑H×W
p cos−1

(
np � ñ p

)
. We also measure the ratios

of the number of surface normals with angular error smaller
than 10◦ and 30◦, which are denoted as err<10◦ and err<30◦ ,
respectively. err<10◦ and err<30◦ can better measure the
errors over high-frequency regions, because the errors of sur-
face normals in high-frequency regions are usually bigger.

4.1 Data Sets

4.1.1 Training Data Sets

For a fair comparison, two commonly used data sets, the
Blobby Shape data set (Johnson & Adelson, 2011) and
the Sculpture Shape data set (Wiles & Zisserman, 2017),
rendered by 64 random illumination directions in the upper-
hemisphere for each of the 100 BRDFs from the MERL data
set (Matusik et al., 2003), were chosen to form the training
set. These two data sets provide surfaces with complex struc-
tures and rich surface orientations, and the MERL dataset
contains 100 different BRDFs of real-world materials. This
setting has been widely used by most of the deep learning-
based photometric stereo methods, such as PS-FCN (Chen
et al., 2018), SDPS-Net (Chen et al., 2019), LMPS (Li et
al., 2019), Attention-PSN (Ju et al., 2020b), Manifold-PSN
(Ju et al., 2020a), GPS-Net (Yao et al., 2020), UPS-GCNet
(Chen et al., 2020b), etc.

4.1.2 Test Data Sets

To evaluate our method, we apply several commonly used
data sets, including both synthetic and real data sets. For the
synthetic data set, we employ the synthetic object “Dragon”
used in (Chen et al., 2020a). The object “Dragon” was ren-
dered with 100 different BRDFs from the MERL data set
(Matusik et al., 2003) under 100 random illumination direc-
tions in the upperhemisphere.

For the real data sets, we first employ the publicDiLiGenT
benchmark data set (Shi et al., 2019), which is composed of
two parts: the main data set which contains 10 objects of var-
ious shapes with ground truth and the test data set contains
9 objects (different views from the main data set) without
ground truth. Each object provides images with a resolution
of 612 × 512 from 96 different known illumination direc-
tions. TheDiLiGenTbenchmark data set is challenging for its
strong non-Lambertian surfaces and non-convex structures.
Second, we employ the Light Stage Data Gallery (Einarsson
et al., 2006) and Gourd data set (Alldrin et al., 2008), which
contain six and two objects without ground truth, respec-
tively. Each object has 253 (Light Stage Data Gallery) or 96
(Gourd data set) images under different illumination direc-
tions.

(a) (b)

Fig. 6 Results of ourNormAttention-PSN, trainedwith different values
of the hyperparameter λ. a Performances in terms of MAE (the lower
the better). b Performances in terms of err<10◦ and err<30◦ (the higher
the better) (Color figure online)

4.2 Ablation Experiments and Network Analysis

We conducted quantitative ablation experiments on the DiLi-
GenT data set (Shi et al., 2019) (except for convergence
comparison in Fig. 7, which uses the validation set). For all
the experiments in the ablation study, we train the ablated
models three times and calculate the average MAE, err<10◦ ,
and err<30◦ on the DiLiGenT data set (Shi et al., 2019), with
all the 96 input images.

4.2.1 Choice of the Hyperparameter �

We first test the performances of our model with different
values of the hyperparameter λ of Eq. (13). As shown in Fig.
6, it can be seen that an appropriate value of the hyperpa-
rameter λ is essential for the performance of our method.
The reason why our method needs an appropriate λ can be
explained as follows. The gradient lossLgradient can highlight
the high-frequency information, providing a better surface
normal reconstruction in complicated regions. However, a
large weight of Lgradient will dilute the penalty on the errors
of the surface normal, because the gradient loss only pro-
vides the relationship between adjacent pixels, but ignores
the orientation of the surface normals (as can be seen in Eqs.
(14) and (15)). A more comprehensive ablated experiment
about the loss function can be found in Table 1, which has
also proved that using only the gradient loss will cause the
non-convergence of a photometric stereo network.

To determine the optimal λ, we experimentally test our
framework with different values of λ from 0 to 0.5, as shown
in Fig. 6, and the best performance is achieved when λ =
0.125. With this value of λ, the average MAE is 6.85◦, and
the average ratios of err<10◦ and err<30◦ are 0.861 and 0.984,
respectively, on theDiLiGenT data set (Shi et al., 2019). Note
that, when the hyperparameter λ = 0, our model is trained
by only using the cosine similarity loss Langular(np, ñ p). In
this case, the MAE is 7.06◦. In fact, this performance has
already outperformed PS-FCN (Norm.) (Chen et al., 2020a),
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Fig. 7 Comparison of the convergence of our NormAttention-PSN
on the validation set and the DiLiGenT benchmark (Shi et al., 2019).
The orange line represents the results of NormAttention-PSN with the
attention-weighted loss, while the blue line is the loss of GeometryNet
optimized by a single cosine similarity loss. Both the networks were
trained with the same structuree (Color figure online)

Table 1 Ablation results for the different loss functions

Loss function MAE ↓ err<10◦ ↑ err<30◦ ↑
Attention-weighted loss 6.85 0.861 0.984

1 (Cosine): 1 (Gradient) 7.74 0.849 0.980

2 (Cosine): 1 (Gradient) 7.31 0.850 0.982

5 (Cosine): 1 (Gradient) 7.23 0.852 0.982

Single cosine loss 7.06 0.857 0.983

Single gradient loss 31.56 0.156 0.595

Bold values indicate the best performance

which achieves the MAE of 7.39◦ on the DiLiGenT data set
(Shi et al., 2019), under 96 input images. This also proves
the effectiveness of our parallel high-resolution extractor fge

(see Sect. 4.2.3) and double-gate normalization method (see
Sect. 4.2.4).

4.2.2 Effectiveness of the Attention-Weighted Loss

In this Section, we first discuss the optimization and effec-
tiveness of the attention-weighted loss. In Fig. 7, we visualize
the convergence of our proposed model on the validation set
and the DiLiGenT benchmark (Shi et al., 2019) during train-
ing our NormAttention-PSN with attention-weighted loss
(orange line), which is compared to the same GeometryNet
with a single cosine similarity loss Langular(np, ñ p) (blue
line). Following the previous settings (Chen et al., 2018,
2020a), the validation set is randomly split from the train-
ing dataset, and has a total of 852 samples with 32 images.
In Fig. 7, we report the average MAE of these 852 samples
from the Validation set, as well as that of 96 input images
from 10 objects in DiLiGenT.

As shown in Fig. 7, our NormAttention-PSN with the
attention-weighted loss can achieve lower convergence error
than the single cosine loss on the validation set and the DiLi-
GenT benchmark (Shi et al., 2019) (evaluated on Epoch 35).
This illustrates the effectiveness of the attention-weighted
loss. However, we also found that the attention-weighted
loss has a slower speed of convergence at the beginning of
training, compared with the single cosine loss. This might
be explained by the fact that the generated attention maps
provide inaccurate weights at the beginning of the training
period.

To explicitly show the evolution of the attention maps
generated by AttentionNet, we further visualize the attention
maps in different training periods, as shown in Fig. 8. We
show the attention maps for providing the weight ωp of Eq.
(13) from the beginning to the end of the learning period, and
the error maps.

As shown in Fig. 8, the attention maps can quickly
reflect the high-frequency representations. Fig. 8 shows some
examples of the weights of the gradient loss (ωp in Eq.
(13)) in high-frequency regions. It can be seen that the
learned weights enlarge gradually along with training, so the
weight of the gradient loss Lgradient becomes more signifi-
cant. In fact, the attention maps basically provide reasonable
weights for the attention-weighted loss after training for
only two epochs. This can be explained by the fact that
the edge-preserving layer fep is fused in the AttentionNet.
The edge-preserving layer computes the gradient of the nor-
malized images M ′

k, which provides the obviously prior
information for the edge and crinkle regions. Therefore, our
AttentionNet can learn the accurate attention maps fast. In
addition, it can be seen that the belly of the object “Buddha”
has a region of specular highlights, whereas the attention
maps in the region are not activated. It illustrates the effec-
tiveness of our dual double-gate normalization method used
in AttentionNet.

As tabulated in Table 1, we then compare the results
based on different loss functions, conducted on the DiLi-
GenT benchmark (Shi et al., 2019). In Table 1, we evaluate
the attention-weighted loss, fixed rate of cosine and gradi-
ent loss, single cosine loss, and single gradient loss. For the
experiment without attention-weighted loss, we only remain
the GeometryNet without the AttentionNet.

As tabulated in Table 1, the attention-weighted loss con-
sistently outperforms the others in all the metrics. For the
attention-weighted loss, a higher err10◦ and err30◦ mean
that fewer complex-structured regions suffer from the large
angular error. In addition, it can be seen that all the fixed
combined losses achieves worse results on the metrics of
MAE, err<10◦ , and err<30◦ . As discussed in Sect. 4.2.1, the
gradient loss only provides the relationship between adjacent
pixels, but ignores the orientation of the surface normals. The
fixed combination of cosine loss and gradient loss actually

123



International Journal of Computer Vision

0.461                          0.537                            0.667                          0.693                         0.696                           0.703                           0.701                           0.707    

0.350                           0.545                           0.507                          0.511                         0.519                          0.558                            0.561                          0.560    

0.226                          0.556                            0.559                          0.625                         0.633                          0.717                            0.721                          0.737    

Normaliza�on                11.73                       10.40                        10.35                         9.09     7.92                          7.46                          6.53                          5.99 

Normaliza�on               13.23                        11.98                       12.30                        10.04      7.82                          7.09                          6.67                          6.42 

Normaliza�on              12.09                        10. 87                       10.24                         9.28      8.94                           8.06                         7.59                           7.12 

Fig. 8 The evolution of the attention maps, error maps, and the learned
weights of the gradient loss in the high-frequency regions. We show
the results using the checkpoints of Epoch1, Epoch2, Epoch3, Epoch5,
Epoch10, Epoch15, Epoch25, and Epoch35, taking objects “Cow”,

“Pot2”, and “Buddha” from DiLiGenT benchmark (Shi et al., 2019)
as the examples. The black numbers under error maps represent the
MAE, while the red numbers represent the learned weights

dilute the penalty on the errors of the surface normals. It can
also be proved by the ablation experiment with a single gra-
dient loss, which cannot optimize GeometryNet. Therefore,
we use an adaptive learned attention-weighted loss to opti-
mize our framework, which only provides higher weights on
the high-frequency regions to maintain the completeness of
the complex structure.

4.2.3 Effectiveness of the High-Resolution Extractor

We evaluate the performance of the high-resolution struc-
ture fge. Table 2 shows the results, where ID (0) represents
the performance of our proposed model, when the features
are of full resolution ( f r ), half resolution (hr ), and quar-
ter resolution (qr ), with residual blocks, as shown in Fig. 4.
ID (1) compares the results of the plain layers counterpart
(same high-resolution structure without residual blocks) of
ID (0). For IDs (2)∼ (6), we adjust the architecture of Geom-
etryNet to realize different combinations of the features of

Table 2 Ablated results of the parallel high-resolution structure fge

ID Method MAE ↓ err<10◦ ↑ err<30◦ ↑
(0) Ours 6.85 0.861 0.984

(1) w/o Residual blocks 6.99 0.856 0.982

(2) f r 7.28 0.848 0.980

(3) f r+hr 7.07 0.852 0.982

(4) f r+qr 7.05 0.853 0.982

(5) hr+qr 7.23 0.850 0.981

(6) f r+hr+qr+er 6.95 0.858 0.982

Bold values indicate the best performance

different resolutions (without residual blocks). Note that er
in ID (6) means using features of one-eighth resolution. Fur-
thermore, no multi-scale max-pooling operation is used in
ID (2), because features of a single resolution are extracted
in this ablated method.
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Table 3 Results of our model with different pre-processing methods

Method MAE ↓ err<10◦ ↑ err<30◦ ↑
Double-gate normalization 6.85 0.861 0.984

Original normalization 6.98 0.855 0.983

w/o Normalization 7.56 0.848 0.980

w/o Dual double-gate 6.88 0.861 0.984

Bold values indicate the best performance

Table 2 tabulates the results of the ablation experiments
with different structures of GeometryNet fge. Experiments
(0) and (1) show the effectiveness of the residual blocks
(He et al., 2016), where all the performances metrics are
worse, when the residual blocks of high-resolution structure
are replaced by the plain convolutional layers. Note that ID
(2) has only full resolution feature, which can be seen as a
fully convolutional network without up and down sampling.
Referring to the experiment results for IDs (3) ∼ (6), we
compare the performance of using different combinations of
feature resolutions. In all, combining features with multiple
resolutions is beneficial to the prediction accuracy. From the
experiment results for IDs (3), (4), and (5), it can be seen that
combining features with higher resolutions can provide bet-
ter performance. Especially, when the network has not full
resolution features f r (ID (5)), the performance is worse
than ID (4) with f r . It illustrates that the high resolution of
features has a crucial impact on the performance of the per-
pixel surface-normal recovery task. We also found that the
default structure ( f r + hr + qr , ID (1)) is slightly worse than
ID (6) that has an additional resolution feature er . However,
the additional er resolution feature significantly increases the
parameters and training time.

4.2.4 Effectiveness of the Double-Gate Normalization

We evaluate the effectiveness of the proposed double-gate
normalization, and the results are tabulated in Table 3.
The results in Table 3 show the performance of our model
with normalization or without normalization. Concretely,
we compare the double-gate normalization with the original
normalization (Chen et al., 2020a), and without the nor-
malization method. Specially, we also report the results of
without using the proposed dual double-gate normalization
in AttentionNet.

As reported in Table 3, the proposed double-gate nor-
malization method outperforms the original normalization
(Chen et al., 2020a). The original method suffers from sup-
pressed observations due to specular highlights existing on
the non-Lambertian surfaces, which influences the results
of the estimated surface normals. Note that our double-gate
normalization method is additionally fused with the original
observations M1, M2, · · · , Mt , as discussed in Sect. 3.2.1.

Table 4 Ablation results for diffrent fusion methods

Fusion type MAE ↓ err<10◦ ↑ err<30◦ ↑
Max-pooling 6.85 0.861 0.984

Average-pooling 7.84 0.818 0.976

Max-p. + Average-p. 7.04 0.855 0.983

Bold values indicate the best performance

The network without any observation normalization leads
to a quite large angular error. With the normalization pre-
processing step, the generated attention map can accurately
reflect the regions with real high-frequency structures rather
than being stimulated by spatially varying BRDFs.

In addition, the dual double-gate normalization used in
AttentionNet can sightly improve the accuracy of the esti-
mation. This is because the dual double-gate normalization
can further remove outliers (specular highlights, etc.) in the
observations, which might impact the generated attention
maps. As shown in Fig. 5, the middle of the object “Ball”
is not a complex structure region, but only the proposed dual
double-gate normalization obviously can generate more rea-
sonable attention map for the object. However, the proposed
method only improves the results on the objects with partic-
ularly simple structure, where the specular highlights are the
only high-frequency information. Therefore, the improve-
ment is not very obvious.

4.2.5 Performances of the Different Fusion Methods

We further compare the performance of our framework based
on different fusion methods, to experimentally explore the
effect of the maximum and average operations in Table
4. We test our method with different methods, including
fusion using max-pooling only, average-pooling only, and
a combination of max-pooling and average-pooling (by con-
catenation and a 1 × 1 convolutional layer to keep the
same number of channels). Note that the fusion layer in
GeometryNet and AttentionNet are the same in our ablation
experiments.

From Table 4, we can see that the max-pooling operation
achieves the best performance on all threemetrics.Our exper-
imental results show a contrary conclusion, when compared
to (Yao et al., 2020), which reported that a better performance
can be achieved based on a combination of max-pooling and
average-pooling. We conjecture that this may be due to the
use of observation normalization in our method, because this
operation can be partially viewed as “average-pooling” (the
normalized m′

i contains information from all the original
observations, see Eq. (2)). Therefore, the average-pooling
operation in the fusion layer may result in redundancy in the
features.
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Fig. 9 Results of NormAttention-PSN trained and tested with different
numbers of input images

4.2.6 Different Numbers of Inputs During Training

In this Section, we show how the number of inputs, used in
training, influences the performance. Fig. 9 shows the test
performance of our model, on the DiLiGenT data set (Shi et
al., 2019), with different numbers of input training images.
The results show that the test performance is the best, when
the same number of inputs are used for training and testing,
i.e., NormAttention-PSN performs better, when the number
of input images for training is close to that for testing. This
suggests that the performance of NormAttention-PSN can be
further improved by using a close number of input images
for training and testing, if the number of input images for
testing is known and fixed.

4.3 Benchmark Comparisons

4.3.1 DiLiGenT benchmark main data set

The test results of our method and other state-of-the-art
methods on the DiLiGenT benchmark main data set (Shi
et al., 2019), with 96 input images, are listed in Table 5. We
compare NormAttention-PSNwith traditional methods (rep-
resented by the first letter of the authors’ name + published
year) and learning-based (represented by their networks’
names) methods in terms of MAE.

Table 5 tabulates the experimental results, in terms of
MAE, for different methods on the DiLiGenT main data set
(Shi et al., 2019) with all the 96 input images. It can be
seen that our NormAttention-PSN achieves superior results
among more than twenty methods. Compared with the same
training dataset (i.e., the MERL reflectance dataset (Matusik
et al., 2003)), the proposedNormAttention-PSNoutperforms

all the deep learning-based methods, even for the Inverse
model (Wang et al., 2020) with an additional collocated light
image. However, the average MAE of NormAttention-PSN
on the DiLiGenT benchmark (Shi et al., 2019) is slightly
worse than the two new methods LSPC-Net (Honzátko et
al., 2021) and PX-Net (Logothetis et al., 2021). Neverthe-
less, NormAttention-PSN outperforms them on the strongly
non-Lambertian objects with complex structures, such as
“Buddha”, “Harvest”, and “Reading”, as shown by the visual
results in Fig. 10. It can be seen that NormAttention-PSN
can more accurately recover the surface normals in those
regions with cast shadows, such as the sack of “Harvest” and
the middle of “Reading”. In fact, LSPC-Net is trained with
the CyclePS dataset (Ikehata, 2018), which is rendered by
Disney’s principledBSDFs (McAuley et al., 2012). Theoreti-
cally, theDisney’s principledBSDFs used contains unlimited
reflectance, since they integrates different BRDFs controlled
by 11 parameters. This makes the reflectance distributions
more simialar in the real-world scenarios. PX-Net is further
trained by a private synthetic training dataset, rendered by the
BSDFs. Conversely, theMERLBRDFs dataset only contains
100 kinds of reflectance, which barely span the whole set of
materials existing in nature. However, the CyclePS dataset
(Ikehata, 2018) is inappropriate formost deep-learningmeth-
ods since it is designed for per-pixel processing strategy
rather than the all-pixel networks (Yao et al., 2020; Ju et
al., 2021).

Furthermore, we also show the estimations of the high-
frequency regions. In Fig. 1(a), the “leaf” of the object “Pot2”
is a region with complex structure. It can be seen that the
attention map of our method is activated, which reflects the
frequency of the structure. With the attention-weighted loss,
NormAttention-PSNoutperforms all the other deep learning-
based photometric stereo methods in this region. The error
map of NormAttention-PSN clearly shows the less angu-
lar error of the edge and pattern of the “leaf”. Referring to
Fig. 1(b), our method also avoids the influence of the steep
changed materials on the surfaces, where our attention map
is not activated by the spatially varying BRDFs. This illus-
trates the effectiveness of the proposed normalizationmethod
in AttentionNet.

In addition, as indicated in the footnote of Table 5, the
original CNN-PS (Ikehata, 2018), Inverse model (Wang
et al., 2020), LSPC-Net (Honzátko et al., 2021), and PX-
Net (Logothetis et al., 2021) discard the first 20 images of
“Bear” in testing (i.e., tested with the remaining 76 images),
because the first 20 images are photometrically inconsistent
in the belly region (Ikehata, 2018). In fact, when discarding
the first 20 images, the results of our NormAttention-PSN
even performs 4.65 on “Bear” and 6.50 on average. In Fig.
11, we compare the results of our NormAttention-PSN,
CNN-PS, PX-Net, and Inverse model when using all the
76 input images or 96 input images. It can be seen that
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Table 5 Comparison of different methods on the DiLiGenT benchmark main data set (Shi et al., 2019)

Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Average

Least square (Woodham, 1980) 4.10 8.39 14.92 8.41 25.60 18.50 30.62 8.89 14.65 19.80 15.39

ST12 (Shi et al., 2012) 13.58 19.44 18.37 12.34 7.62 17.80 19.30 10.37 9.84 17.17 14.58

IW12 (Ikehata et al., 2012) 2.54 7.32 11.11 7.21 25.70 16.25 29.26 7.74 14.09 16.17 13.74

WG10 (Wu et al., 2010) 2.06 6.50 10.91 6.73 25.89 15.70 30.01 7.18 13.12 15.39 13.35

HM10 (Higo et al., 2010) 3.55 11.48 13.05 8.40 14.95 14.89 21.79 10.85 16.37 16.82 13.22

AZ08 (Alldrin et al., 2008) 2.71 5.96 12.54 6.53 21.48 13.93 30.50 7.23 11.03 14.17 12.61

GC10 (Goldman et al., 2010) 3.21 6.62 14.85 8.22 9.55 14.22 27.84 8.53 7.90 19.07 12.00

IA14 (Ikehata & Aizawa, 2014) 3.34 7.11 10.47 6.74 13.05 9.71 25.95 6.64 8.77 14.19 10.60

ST14 (Shi et al., 2014) 1.74 6.12 10.60 6.12 13.93 10.09 25.44 6.51 8.78 13.63 10.30

HS17 (Hui & Sankaranarayanan, 2016)) 1.33 5.58 8.48 4.88 8.23 7.57 15.81 5.16 6.41 12.08 7.55

DPSN (Santo et al., 2017) 2.02 6.31 12.68 6.54 8.01 11.28 16.86 7.05 7.86 15.51 9.41

IRPS (Taniai & Maehara, 2018) 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83

LMPS (Li et al., 2019) 2.40 5.23 9.89 6.11 7.98 8.61 16.18 6.54 7.48 13.68 8.41

PS-FCN (Chen et al., 2018) 2.82 7.55 7.91 6.16 7.33 8.60 15.85 7.13 7.25 13.33 8.39

Manifold-PSN (Ju et al., 2020a) 3.05 6.31 7.39 6.22 7.34 8.85 15.01 7.07 7.01 12.65 8.09

Attention-PSN (Ju et al., 2020b) 2.93 4.86 7.75 6.14 6.86 8.42 15.44 6.92 6.97 12.90 7.92

DR-PSN (Ju et al., 2021) 2.27 5.46 7.84 5.42 7.01 8.49 15.40 7.08 7.21 12.74 7.90

GPS-Net (Yao et al., 2020) 2.92 5.07 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81

CHR-PSN (Ju et al., 2022) 2.26 6.35 7.15 5.97 6.05 8.32 15.32 7.04 6.76 12.52 7.77

PS-FCN (Norm.) (Chen et al., 2020a) 2.67 7.72 7.53 4.76 6.72 7.84 12.39 6.17 7.15 10.92 7.39

Inverse model*† (Wang et al., 2020) 1.78 5.26 6.09 4.66 6.33 7.22 13.34 6.46 6.45 10.05 6.76

SPLINE-Net ‡ (Zheng et al., 2019) 4.51 5.28 10.36 6.49 7.44 9.62 17.93 8.29 10.89 15.50 9.63

CNN-PS* ‡(Ikehata, 2018) 2.12 8.30 8.07 4.38 7.92 7.42 14.08 5.37 6.38 12.12 7.62

LSPC-Net* ‡(Honzátko et al., 2021) 2.49 8.96 7.23 4.69 4.89 6.89 12.79 5.10 4.98 11.08 6.91

PX-Net* ‡′(Logothetis et al., 2021) 2.03 4.13 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.33

NormAttention-PSN (ours) 2.93 5.48 7.12 4.65 5.99 7.49 12.28 5.96 6.42 9.93 6.83

For those methods with *, we report the results of the object “Bear” with all the 96 input images. In their original paper, they only test the results of
“Bear” with 76 input images, with the first 20 images discarded. The Inverse model (Wang et al., 2020) with † uses a specific collocated illumination
constraint, so the comparison is not fully fair. The three methods with ‡ indicate that the training dataset is the CyclePS rendered by Disney’s
principled BSDFs (McAuley et al., 2012), the PX-Net with ‡′ indicates that the private synthetic training dataset rendered by BSDFs is used, while
the other compared deep learning-based methods are all trained with the dataset rendered by the MERL reflectance dataset (Matusik et al., 2003)

the MAE of our method increases slightly when adding the
first 20 “photometrically inconsistent” images, while others
becomes largely worse.When adding the all 96 images of the
object “Bear”, the angular error of our NormAttention-PSN
only increase 14.17% (4.80 → 5.48), while it increases by
15.69% (3.57→ 4.13), 28.70% (4.12→ 5.26), 97.62% (4.20
→ 8.30), and 150.28% (3.58 → 8.96) of PX-Net, Inverse
model, CNN-PS, and LSPC-Net, respectively. It illustrates
the robustness of the proposed method when meeting wrong
illuminations.

In fact, many practical applications involve sparse pho-
tometric stereo. We evaluate our NormAttention-PSN with
different numbers of input images, and compare itwith recent
deep learning-based methods, such as PS-FCN (Norm.)
(Chen et al., 2020a), GPS-Net (Yao et al., 2020), CNN-PS
(Ikehata, 2018), PS-FCN (Chen et al., 2018), IRPS (Taniai
&Maehara, 2018), LMPS (Li et al., 2019), and SPLINE-Net

(Zheng et al., 2019), on the DiLiGenT main data set (Shi et
al., 2019). Fig. 12 shows the comparison results.

We can see that our NormAttention-PSN outperforms all
the other methods, when more than 16 images are used as
inputs, and keep the promising performance when 10 input
images are used. It is worth noting that some methods are
trained with only 10 input images, such as LMPS (Li et
al., 2019) and SPLINE-Net (Zheng et al., 2019), while our
method is trained with 32 input images. When our method
is also trained with fewer input images (e.g., 8 and 16), the
results of testing with 8 inputs are much better than those
trained with 32 input images, as illustrated in Sect. 4.2.6.
Furthermore, it can be seen that the errors of CNN-PS (Ike-
hata, 2018) is even slightly higher, when the number of input
images increases from 64 to 96, because of the large errors
of inputting all 96 images of the object “Bear” (see Fig. 11).
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Fig. 10 Quantitative results on objects “Harvest”, “Reading”, and
“Buddha” on the DiLiGenT benchmark data set (Shi et al., 2019), with
96 input images. The third column shows the 3D reconstruction results
of our estimated surface normal maps using (Simchony et al., 1990) and

the generated attentionmaps. Comparedwith PX-Net (Logothetis et al.,
2021), PS-FCN (Norm.) (Chen et al., 2020a), Inverse model (Wang et
al., 2020), CNN-PS (Ikehata, 2018), and GPS-Net (Yao et al., 2020),
our NormAttention-PSN achieves the best or sub-optimal results

4.3.2 DiLiGenT Benchmark Test Data Set

We further evaluated our model on the test data set of the
DiLiGenT benchmark (Shi et al., 2019), which contains 9
objectswith different views from themain data set. Due to the
fact that the ground truths are not open, we can only perform
limited comparisons.1 Table 6 tabulates the results. Similar

1 We thank Dr. Zhipeng Mo for helping us test the results on the DiLi-
GenT test data set.

to the results on the main data set, NormAttentionPSN out-
performs other methods on this test data set. Our method
achieves either the best or the second-best results on most
objects. Moreover, our method even outperforms the second-
best method, i.e., PS-FCN (Norm.), by more than 0.55◦, in
terms of the averageMAE, which is 0.36◦ (as shown in Table
5) based on theDiLiGenTmain data set. The visual examples
are illustrated in Fig. 13.
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Fig. 11 Results of NormAttention-PSN and CNN-PS (Ikehata, 2018) using 96 input images or 76 input images of the object “Bear”. Numbers
below the error maps are the MAE in degrees
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Fig. 12 Comparisons on different numbers of input images

4.4 Evaluation on Different Materials

Fig. 14 shows the results on the object “Dragon”, rendered
with 100 different MERL BRDFs (Matusik et al., 2003),
and each type of material is tested with 100 images with

random illumination directions in the upper hemisphere. It
can be seen that the performance of the estimated surface
normals is promising, outperforming the PS-FCN (Norm.)
(icitechen2020deep) on most of the materials. Our method
achieves an average MAE of 4.65◦ on all of the 100 kinds of
materials. On most kinds of materials, our NormAttention-
PSN reconstructs the surface normalswith less than 5 degrees
angular error, which illustrates the robustness of our method
meeting different surface materials.

4.5 Evaluation on the Light Stage Data Gallery

We further evaluated our method on the more complex Light
StageDataGallery data set (Einarsson et al., 2006), with gen-
eral non-Lambertian materials. Fig. 15 shows the qualitative
results of ourmethod. Similarly, ourmethodwas trainedwith
32 images, while being evaluated with 100 input images ran-
domly selected from 253 images. Note that the input images
of the objects “Helmet”, “Plant”, and “Fighting” are down-
sampled to half of the spatial resolution, because the original
resolution is too large to process.

As shown in Fig. 15, the estimated normals retain the
details without blurring, such as the screws of the object
“Helmet”, and the lumpy-looking clothes of the objects

Table 6 Comparison of different methods on the DiLiGenT benchmark test data set (Shi et al., 2019). All methods are evaluated with 96 images

Method Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Average

Least square (Woodham, 1980) 9.36 15.15 8.43 21.97 15.86 27.62 10.44 17.06 21.41 16.36

IK12 (Ikehata et al., 2012) 6.81 10.90 7.54 22.17 13.44 26.46 7.44 14.95 18.05 14.20

ST14 (Shi et al., 2014) 6.09 10.92 6.43 10.82 10.33 25.43 6.64 8.97 14.16 11.08

ST12 (Shi et al., 2012) 5.12 11.00 5.61 11.18 10.54 24.82 6.33 8.83 13.27 10.74

DPSN (Santo et al., 2017) 6.32 12.80 5.82 8.00 12.04 17.78 8.26 9.02 16.11 10.68

PS-FCN (Chen et al., 2018) 5.42 8.30 6.24 7.98 8.62 15.93 7.59 7.11 13.43 8.96

PS-FCN (Norm.) (Chen et al., 2020a) 5.40 8.22 4.39 7.44 8.02 12.69 5.83 7.12 11.57 7.85

NormAttention-PSN (ours) 3.77 8.44 4.28 7.67 7.03 12.84 4.96 5.53 11.17 7.30
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Fig. 13 Quantitative results on the objects “Cow”, “Goblet”, “Harvest”, and “Reading” in the DiLiGenT test data set (Shi et al., 2019) with 96
input images

A                        B                             C                       D                       E                      F                      G                   H                        I                          J             

A                            B                            C                            D                           E         F                           G                           H                            I                             J             

Fig. 14 The MAE of the estimated surface normals on the samples of “Dragon” with 100 kinds of material, from MERL BRDFs (Matusik et al.,
2003). We also show the visual results of our method on ten materials, denoted as A ∼ J

Fig. 15 Qualitative results of our method on four objects, “Helmet”, “Plant”, “Standing”, and “Fighting”, in the Light Stage Data Gallery (Einarsson
et al., 2006), with 100 input images
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Fig. 16 Qualitative results of our method on the objects, “Gourd1” and
“Gourd2”, in the Gourd data set (Alldrin et al., 2008). Next to each
of the object observation, from top to bottom, the three rows show the

estimated normal map, the 3D reconstruction, and the attention map,
where 16, 48, and 96 represent the numbers of input images

“Standing” and “Fighting”. Furthermore, it can be seen that
the attention maps are activated in high-frequency regions,
such as edges and crinkles. Note that the BRDFs of the object
“Plants” are not used during training. However, the results of
“Plant” are quite visually accurate, which shows the robust-
ness of our method.

4.6 Evaluation on the Gourd Data Set

Furthermore, we qualitatively evaluated our method on the
Gourd data set (Alldrin et al., 2008). The surfaces of the
objects in this data set are associated with crinkles and spa-
tially varying BRDFs. Fig. 16 shows the visual results based
on our method, which is trained with 32 images, while tested
with 16, 48, and 96 input images.

It can be seen that our method has the flexibility of han-
dling any number of input images. The estimated surface
normals for the objects, on “Gourd1” and “Gourd2”, can
show clearly crinkles of the objects, under all of the input
conditions. The estimation results, based on our method,
are robust to spatially varying BRDFs, in particular, on
“Gourd2”. Furthermore, the generated attention maps, based
on different numbers of input images, can show the cor-
rect representation of the complicated structures (crinkles),
although some noise can be found in the results when 16
input images are used.

5 Conclusions

In this paper,weproposed adouble-gate normalized attention-
weightedphotometric stereonetwork, namelyNormAttention-
PSN, which significantly improves the estimation of surface

normals, especially in those high-frequency regions. We
present an attention-weighted loss, which provides an adap-
tiveweight for the detail-preserving gradient loss, to optimize
the proposed network. We also employed a double-gate
observation normalization strategy to explicitly remove the
influence of spatially varying BRDFs and avoid the impact
of non-Lambertian surfaces. We further adopted a parallel
high-resolution structure to extract features. The ablation
experiments have illustrated the effectiveness of the differ-
ent components of our method, which benefit the estimation
of surface normals. Extensive quantitative and qualitative
comparisons on both the real (the DiLiGenT benchmark,
the Light Stage Data Gallery, and the Ground data set) and
synthetic (the Dragon data set) data sets have shown that
our method outperforms previous deep learning-based pho-
tometric stereo methods. The visual examples have also
demonstrated that our proposed NormAttention-PSN can
better predict the surface normals of high-frequency regions,
having spatially varying BRDFs, and being non-Lambertian.
Furthermore, NormAttention-PSN can provide a framework
for other low-level and medium-level regression tasks, such
as depth estimation and image enhancement, where the
attention-weighted loss can benefit the recovery of structural
details.
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